Vol. 81
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-02-13
A Compact Non-Bianisotropic Complementary Split Ring Resonator Inspired Microstrip Triple Band Antenna
By
Progress In Electromagnetics Research C, Vol. 81, 115-124, 2018
Abstract
A Compact Non-Bianisotropic Complementary Split Ring Resonator (NB-CSRR) based microstrip triple band antenna is presented in this paper. The antenna has a simple structure compared to other antennas for triple band operation. The antenna consists of a microstrip-fed NBCSRR loaded radiating element and partial ground plane. The designed antenna has a compact size of 29.4 mm x 26 mm x 1.6 mm. Two NBCSRR slots are etched on the radiating patch. Bottom NB-CSRR is used to generate new resonance, and top NB-CSRR is used to improve the return loss. The measured data show that the antenna covers the frequency ranges of 2.5 GHz-3.61 GHz, 4.06 GHz-4.69 GHz, 4.80 GHz-6.07 GHz with impedance bandwidth of (<-10 dB) of 1.11 GHz, 0.63 GHz and 1.27 GHz. The results show that the antenna can cover WLAN and C band applications.
Citation
Ramasamy Pandeeswari , "A Compact Non-Bianisotropic Complementary Split Ring Resonator Inspired Microstrip Triple Band Antenna," Progress In Electromagnetics Research C, Vol. 81, 115-124, 2018.
doi:10.2528/PIERC17103009
http://www.jpier.org/PIERC/pier.php?paper=17103009
References

1. Dang, L., Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1178-1181, 2010.
doi:10.1109/LAWP.2010.2098433

2. Li, R. L., T. Wu, and M. M. Tentzeris, "A triple-band unidirectional coplanar antenna for 2.4/3.5/5-GHz WLAN/WiMax applications," Proceedings of Antennas Propagation Soc. International Symp., 1, Charleston, SC, Jun. 1-5, 2009.

3. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, 2015.
doi:10.1002/mop.29352

4. Pei, J., A.-G. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, 2011.
doi:10.1109/LAWP.2011.2140090

5. Zhao, Q., S. X. Gong, W. Jiang, B. Yang, and J. Xie, "Compact wide-slot tri-band antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 18, 9-18, 2010.
doi:10.2528/PIERL10081601

6. Liu, N.-W., L. Yang, Z.-Y. Zhang, G. Fu, and Q.-Q. Liu, "A novel face-like triple-band antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 45, 105-110, 2014.
doi:10.2528/PIERL14031801

7. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

8. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.
doi:10.1002/0471754323

9. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Electrically small patch antenna loaded with metamaterial," IETE Journal of Research, Vol. 56, 373-379, 2011.

10. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
doi:10.1002/mop.28602

11. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, Wiley Interscience, USA, 2015.
doi:10.1002/mop.29352

12. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015.
doi:10.1002/mop.28835

13. Rani, R. B. and S. K. Pandey, "CSRR inspired conductor backed CPW-fed monopole antenna for multiband operation," Progress In Electromagnetics Research C, Vol. 70, 135-143, 2016.
doi:10.2528/PIERC16102801

14. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Left offset-fed complementary split ring resonators loaded monopole antenna for multiband operations," Int. J. Electron. Commun. (AEÜ), Vol. 78, 72-78, 2017.
doi:10.1016/j.aeue.2017.05.016

15. Si, L. M., W. Zhu, and H. J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas Wireless Propag. Lett., Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037

16. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcfa-Farcfa, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 53, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211

17. Reddy, N. A. and S. Raghavan, "Split ring resonator and its evolved structures over the past decade," Proceedings in (ICE-CCN), 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology, IEEE Explorer, 2013.

18. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Multiband monopole antenna loaded with complementary split ring resonator and C-shaped slots," Int. J. Electron. Commun. (AEÜ), Vol. 75, 8-14, 2017.
doi:10.1016/j.aeue.2017.03.001

19. Ziolkoski, R. W., Design, Fabrication, and Testing of Double Negative Metamaterials, Vol. 51, No. 7, 1516-1529, Jul. 2003.