1. Si, L. M., W. Zhu, and H. J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas Wireless Propagation. Letters, Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037 Google Scholar
2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp, Vol. 10, 509-14, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
3. Christophe, C. and I. Tatsuo, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.
4. Marques, R., F. Martina, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley-Inter Science, 2007.
doi:10.1002/9780470191736
5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetismfrom conductors and enhanced nolinear phenomena," IEEE Transactions on Microwave Theory Technology, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
6. Smith, D. R., D. C. Viker, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Applied Physics Letters, Vol. 77, 2246-2248, 2000.
doi:10.1063/1.1314884 Google Scholar
7. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physics Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
8. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alice, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory Technology, Vol. 55, 2865-2872, 2007.
doi:10.1109/TMTT.2007.909611 Google Scholar
9. Dong, Y. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, 2012.
doi:10.1109/JPROC.2012.2187631 Google Scholar
10. Si, L.-M., H.-J. Sun, Y. Yuan, and X. Lv, "CPW-fed compact planar UWB antenna with circular disc and spiral split ring resonators," PIERS Proceedings, 502-505, Beijing, China, March 23-27, 2009. Google Scholar
11. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, 2388-2392, 2014.
doi:10.1002/mop.28602 Google Scholar
12. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left handed transmission line," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 36-39, 2010.
doi:10.1109/LAWP.2010.2041628 Google Scholar
13. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, 292-296, 2015.
doi:10.1002/mop.28835 Google Scholar
14. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian Journal of Radio & Space Physics, Vol. 40, 159-165, June 2011. Google Scholar
15. Basaran, S. C. and K. Sertel, "Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications," Electron Letters, Vol. 49, No. 10, 636-638, 2013.
doi:10.1049/el.2013.0357 Google Scholar
16. Liu, H.-W., C.-H. Ku, and C.-F. Yang, "Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications," IEEE Antennas Wireless Propagation. Letters, Vol. 9, 240-243, 2010.
doi:10.1109/LAWP.2010.2044860 Google Scholar
17. Yang, K., H. Wang, Z. Lei, Y. Xie, and H. Lai, "CPW-fed slot antenna with triangular SRR terminated feed line for WLAN/WiMAX applications," Electronics Letters, Vol. 47, 685-686, 2011.
doi:10.1049/el.2011.1232 Google Scholar
18. Quan, X. L., R. L. Li, Y. H. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual-band directional antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 547-550, 2012.
doi:10.1109/LAWP.2012.2199458 Google Scholar
19. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and Wi-Max applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, 2015.
doi:10.1002/mop.29352 Google Scholar
20. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for Mobile applications," Microwave and Optical Technology Letters, Vol. 57, 1444-1447, 2015.
doi:10.1002/mop.29113 Google Scholar
21. Rajeshkumar, V. and S. Raghavan, "A compact asymmetric monopole antenna with electrically coupled SRR for WiMAX/WLAN/UWB applications," Microwave and Optical Technology Letters, Vol. 57, 2194-2197, 2015.
doi:10.1002/mop.29298 Google Scholar
22. Imaculate Rosaline, S. and S. Raghavan, "A compact dual band antenna with an ENG SRR cover for SAR reduction," Microwave and Optical Technology Letters, Vol. 57, 741-747, 2015.
doi:10.1002/mop.28941 Google Scholar
23. Rajeshkumar, V. and S. Raghavan, "Trapezoidal ring quad-band fractal antenna for WLAN/WIMAX applications," Microwave and Optical Technology Letters, Vol. 56, 2545-2548, 2014.
doi:10.1002/mop.28631 Google Scholar
24. Kaur, J. and R. Khanna, "Development of dual-band microstrip patch antenna for WLAN/MIMO/WIMAX/ AMSAT/WAVE applications," Microwave and Optical Technology Letters, Vol. 56, 988-993, 2014.
doi:10.1002/mop.28206 Google Scholar
25. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, 2388-2392, 2014.
doi:10.1002/mop.28602 Google Scholar
26. Balanis, C. A., Modern Antenna Handbook, John Wiley and Sons, Inc., 2005.
27. Matin, M. A. and A. I. Sayeed, "A design rule for inset-fed rectangular microstrip patch antenna," WSEAS Transactions on Communications, Vol. 9, No. 1, 2010. Google Scholar
28. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Review B, Vol. 65, 195104-195109, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
29. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
30. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optical Express, Vol. 14, 12944-12949, 2006.
doi:10.1364/OE.14.012944 Google Scholar