Vol. 81
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-31
An Inset-Fed Rectangular Microstrip Patch Antenna with Multiple Split Ring Resonator Loading for WLAN and RF-ID Applications
By
Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018
Abstract
In this paper, the analysis and design of a compact Multiple Split Ring Resonator (MSRR) inspired microstrip rectangular patch antenna is presented. The MSRR is used with four rings. The size of the antenna is 25 × 31 × 1.6 mm3 realized on a low cost FR4 substrate. The proposed rectangular microstrip patch antenna operates at the resonant frequency of 5.88 GHz prior to MSRR inclusion. The antenna characteristics are studied before and after inclusion of metamaterial. After including MSRRs at appropriate places, the proposed MSRR antenna induces a new resonant frequency of 2.78 GHz. In addition to rectangular patch's fundamental resonance, the additional resonance is obtained at 2.78 GHz, thus, exhibits dual bands. Hence, MSRR loading antenna attains a bandwidth of 197 MHz at 2.78 GHz and 703 MHz at 5.88 GHz. The prototype of the proposed antenna is fabricated and measured. Simulated results are verified with the measured ones. This proposed antenna can be effectively utilized for WLAN and RF-ID applications. Parametric studies are illustrated to yield the desired frequency bands. Equivalent circuit model analysis of the MSRR loading is determined. Band characteristics of split ring structure are used to determine the negative permeability characteristics.
Citation
Nambiyappan Thamil Selvi, Ramasamy Pandeeswari, and Palavesa Nadar Thiruvalar Selvan, "An Inset-Fed Rectangular Microstrip Patch Antenna with Multiple Split Ring Resonator Loading for WLAN and RF-ID Applications," Progress In Electromagnetics Research C, Vol. 81, 41-52, 2018.
doi:10.2528/PIERC17110102
References

1. Si, L. M., W. Zhu, and H. J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas Wireless Propagation. Letters, Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037        Google Scholar

2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp, Vol. 10, 509-14, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

3. Christophe, C. and I. Tatsuo, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.

4. Marques, R., F. Martina, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley-Inter Science, 2007.
doi:10.1002/9780470191736

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetismfrom conductors and enhanced nolinear phenomena," IEEE Transactions on Microwave Theory Technology, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

6. Smith, D. R., D. C. Viker, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Applied Physics Letters, Vol. 77, 2246-2248, 2000.
doi:10.1063/1.1314884        Google Scholar

7. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physics Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

8. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alice, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory Technology, Vol. 55, 2865-2872, 2007.
doi:10.1109/TMTT.2007.909611        Google Scholar

9. Dong, Y. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, 2012.
doi:10.1109/JPROC.2012.2187631        Google Scholar

10. Si, L.-M., H.-J. Sun, Y. Yuan, and X. Lv, "CPW-fed compact planar UWB antenna with circular disc and spiral split ring resonators," PIERS Proceedings, 502-505, Beijing, China, March 23-27, 2009.        Google Scholar

11. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, 2388-2392, 2014.
doi:10.1002/mop.28602        Google Scholar

12. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left handed transmission line," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 36-39, 2010.
doi:10.1109/LAWP.2010.2041628        Google Scholar

13. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, 292-296, 2015.
doi:10.1002/mop.28835        Google Scholar

14. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian Journal of Radio & Space Physics, Vol. 40, 159-165, June 2011.        Google Scholar

15. Basaran, S. C. and K. Sertel, "Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications," Electron Letters, Vol. 49, No. 10, 636-638, 2013.
doi:10.1049/el.2013.0357        Google Scholar

16. Liu, H.-W., C.-H. Ku, and C.-F. Yang, "Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications," IEEE Antennas Wireless Propagation. Letters, Vol. 9, 240-243, 2010.
doi:10.1109/LAWP.2010.2044860        Google Scholar

17. Yang, K., H. Wang, Z. Lei, Y. Xie, and H. Lai, "CPW-fed slot antenna with triangular SRR terminated feed line for WLAN/WiMAX applications," Electronics Letters, Vol. 47, 685-686, 2011.
doi:10.1049/el.2011.1232        Google Scholar

18. Quan, X. L., R. L. Li, Y. H. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual-band directional antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 547-550, 2012.
doi:10.1109/LAWP.2012.2199458        Google Scholar

19. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and Wi-Max applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, 2015.
doi:10.1002/mop.29352        Google Scholar

20. Sharma, S. K. and R. K. Chaudhary, "Dual-band metamaterial-inspired antenna for Mobile applications," Microwave and Optical Technology Letters, Vol. 57, 1444-1447, 2015.
doi:10.1002/mop.29113        Google Scholar

21. Rajeshkumar, V. and S. Raghavan, "A compact asymmetric monopole antenna with electrically coupled SRR for WiMAX/WLAN/UWB applications," Microwave and Optical Technology Letters, Vol. 57, 2194-2197, 2015.
doi:10.1002/mop.29298        Google Scholar

22. Imaculate Rosaline, S. and S. Raghavan, "A compact dual band antenna with an ENG SRR cover for SAR reduction," Microwave and Optical Technology Letters, Vol. 57, 741-747, 2015.
doi:10.1002/mop.28941        Google Scholar

23. Rajeshkumar, V. and S. Raghavan, "Trapezoidal ring quad-band fractal antenna for WLAN/WIMAX applications," Microwave and Optical Technology Letters, Vol. 56, 2545-2548, 2014.
doi:10.1002/mop.28631        Google Scholar

24. Kaur, J. and R. Khanna, "Development of dual-band microstrip patch antenna for WLAN/MIMO/WIMAX/ AMSAT/WAVE applications," Microwave and Optical Technology Letters, Vol. 56, 988-993, 2014.
doi:10.1002/mop.28206        Google Scholar

25. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, 2388-2392, 2014.
doi:10.1002/mop.28602        Google Scholar

26. Balanis, C. A., Modern Antenna Handbook, John Wiley and Sons, Inc., 2005.

27. Matin, M. A. and A. I. Sayeed, "A design rule for inset-fed rectangular microstrip patch antenna," WSEAS Transactions on Communications, Vol. 9, No. 1, 2010.        Google Scholar

28. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Review B, Vol. 65, 195104-195109, 2002.
doi:10.1103/PhysRevB.65.195104        Google Scholar

29. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847        Google Scholar

30. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optical Express, Vol. 14, 12944-12949, 2006.
doi:10.1364/OE.14.012944        Google Scholar