1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, Systems and Signal Processing, John Wiley & Sons, NY, 1991.
2. Massonnet, D. and J. C. Souyris, Imaging with Synthetic Aperture Radar, EPFL Press, 2008.
doi:10.1201/9781439808139
3. Zebker, H. A. and R. M. Goldstein, "Topographic mapping from interferometric synthetic aperture radar observations," J. Geophysics Research, Vol. 9, No. 5, 4993-4999, 1986.
doi:10.1029/JB091iB05p04993 Google Scholar
4. Massonnet, D. and K. L. Feigl, "Radar interferometry and its applications to changes in the Earth’s surface," Review of Geophysics, Vol. 36, 441-500, 1998.
doi:10.1029/97RG03139 Google Scholar
5. Preiss, M., D. A. Gray, and N. J. S. Stacy, "Detecting scene changes using synthetic aperture radar interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 8, 2041-2054, 2005.
doi:10.1109/TGRS.2006.872910 Google Scholar
6. Fan, C., X.-T. Huang, T. Jin, J.-G. Yang, and D. X. An, "Novel pre-processing techniques for coherence improving in along-track dual-channel low frequency SAR," Progress In Electromagnetics Research, Vol. 128, 171-193, 2012.
doi:10.2528/PIER12011502 Google Scholar
7. Jungkyo, J., et al. "Damage-mapping algorithm based on coherence model using multitemporal polarimetric interferometric SAR data," IEEE Transactions on Geoscience and Remote Sensing, 2017, DOI: 10.1109/TGRS.2017.2764748. Google Scholar
8. Touzi, R., A. Lopes, J. Bruniquel, and P. W. Vachon, "Coherence estimation for SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 1, 135-149, 1999.
doi:10.1109/36.739146 Google Scholar
9. Martinez, C. L., "Coherence estimation in synthetic aperture radar data based on speckle noise modeling," Applied Optics, Vol. 46, No. 4, 544-558, 2007.
doi:10.1364/AO.46.000544 Google Scholar
10. Bouaraba, A., D. Borghys, A. Belhadj-Aissa, M. Acheroy, and D. Closson, "Improving CCD performance by the use of local fringe frequencies," Progress In Electromagnetics Research C, Vol. 32, 123-137, 2012.
doi:10.2528/PIERC12070305 Google Scholar
11. Bouaraba, A., et al. "InSAR phase filtering via joint subspace projection method: Application in change detection," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 10, 1817-1820, 2014.
doi:10.1109/LGRS.2014.2310493 Google Scholar
12. Bouaraba, A., et al. "man-made change detection using high resolution Cosmo-SkyMed SAR interferometry," Arabian Journal for Science and Engineering, Vol. 41, No. 1, 201-208, 2016.
doi:10.1007/s13369-015-1736-4 Google Scholar
13. Wahl, D. E., D. A. Yocky, C. V. Jakowatz, and K. M. Simonson, "A new maximum-likelihood change estimator for two-pass SAR coherent change detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 4, 2460-2469, 2016.
doi:10.1109/TGRS.2015.2502219 Google Scholar
14. Karsten, S. and H. Andrew, "InSAR processing for volcano monitoring and other near-real time applications," Journal of Geophysical Research: Solid Earth, Vol. 121, No. 4, 2947-2960, 2016.
doi:10.1002/2015JB012752 Google Scholar
15. Cumming, I. G., et al. "Interpretations of the Omega-K algorithm and comparisons with other algorithms," IEEE Geoscience and Remote Sensing Symposium Proceedings, 1455-1458, 2003. Google Scholar
16. Richards, M. A., Fundamentals of Radar Signal Processing, McGraw-Hill, New York, 2005.