1. Ammann, M. J. and Z. N. Chen, "Wideband monopole antennas for multi-band wireless systems," IEEE Antennas and Propagation Magazine, Vol. 45, No. 2, 146-150, 2003.
doi:10.1109/MAP.2003.1203133 Google Scholar
2. Booker, H. G., "Slot aerials and their relation to complementary wire aerials (Babinets principle)," Journal of the Institution of Electrical Engineers. Part IIIA: Radiolocation, Vol. 93, No. 4, 620-626, 1946.
doi:10.1049/ji-3a-1.1946.0150 Google Scholar
3. Wong, K. L. and W. H. Hsu, "A broad-band rectangular patch antenna with a pair of wide slits," IIEEE Transactions on Antennas and Propagation, Vol. 49, No. 9, 1345-1347, 2001.
doi:10.1109/8.951507 Google Scholar
4. DeJean, G. R., T. T. Thai, S. Nikolaou, and M. M. Tentzeris, "Design and analysis of microstrip bi-Yagi and quad-Yagi antenna arrays for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 244-248, 2007.
doi:10.1109/LAWP.2007.893104 Google Scholar
5. Ehrenspeck, H., "The double-helix antenna and its variants, a new class of tunable endfire antennas ," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 2, 203-208, 1965.
doi:10.1109/TAP.1965.1138408 Google Scholar
6. Pazin, L. and Y. Leviatan, "A compact 60-GHz tapered slot antenna printed on LCP substrate for WPAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 272-275, 2010.
doi:10.1109/LAWP.2010.2046612 Google Scholar
7. Zheng, G., A. A. Kishk, A. B. Yakovlev, and A.W. Glisson, "Simplified feed for amodified printed Yagi antenna," IEEE Electronics Letters, Vol. 40, No. 8, 464-465, 2004.
doi:10.1049/el:20040348 Google Scholar
8. Zheng, G., A. A. Kishk, A. B. Yakovlev, and A. W. Glisson, "A broad band printed bow-tie antenna with a simplified feed," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 4024-4027, 2004. Google Scholar
9. Deal, W. R., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 6, 910-918, 2000.
doi:10.1109/22.846717 Google Scholar
10. Leong, K. M. K. H., Y. Qian, and T. Itoh, "Surface wave enhanced broadband planar antenna for wireless applications," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 6, 62-64, 2001.
doi:10.1109/7260.914303 Google Scholar
11. Zhou, B. and T. J. Cui, "Directivity enhancement to vivaldi antennas using compactly anisotropic zero-index metamaterials ," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 326-329, 2011.
doi:10.1109/LAWP.2011.2142170 Google Scholar
12. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, 2013.
doi:10.1109/TAP.2012.2237154 Google Scholar
13. Chen, L., Z. Lei, R. Yang, J. Fan, and X. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 395-400, 2015.
doi:10.1109/TAP.2014.2365044 Google Scholar
14. Henely, S., The Avionics Hand Book, 18-TCAS II, Rockwell Collins, Cedar Rapids, 2001.
15. TCAS S72-1735-25, AIRNC 735, Sensor Systems Inc., Aircraft Antennas since, 1961.
16. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physics Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar