1. Melvin, W. L., "A stap overview," IEEE Aerospace and Electronic Systems Magazine, Vol. 19, No. 1, 9-35, Jan. 2004.
doi:10.1109/MAES.2004.1263229 Google Scholar
2. Klemm, R., "Principles of space-time adaptive processing,", The Institution of Engineering and Technology, London, UK, 2006. Google Scholar
3. Guerci, J. R., Space-time Adaptive Processing for Radar, Artech House, Boston, USA, 2003.
4. Li, X. M., D. Z. Feng, H. W. Liu, and D. Luo, "Dimension-reduced space-time adaptive clutter suppression algorithm based on lower-rank approximation to weight matrix in airborne radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 1, 53-69, Jan. 2014.
doi:10.1109/TAES.2013.080153 Google Scholar
5. Liu, H. W., Y. S. Zhang, Y. D. Guo, et al. "A novel STAP algorithm for airborne MIMO radar based on temporally correlated multiple sparse Bayesian learning," Mathematical Problems in Engineering, 2016. Google Scholar
6. Chen, C. Y. and P. P. Vaidyanathan, "MIMO radar space-time adaptive processing using prolate spheroidal wave functions," IEEE Trans. Signal Process., Vol. 56, No. 2, 623-635, Feb. 2008.
doi:10.1109/TSP.2007.907917 Google Scholar
7. Leatherwood, D. A., W. L. Melvin, and R. Acree, "Configuring a sparse aperture antenna for spaceborne MTI radar," IEEE Radar Conference, 139-146, Alabama, USA, May 2003. Google Scholar
8. Morabito, A. F., A. R. Lagana, and T. Isernia, "Isophoric array antennas with a low number of control points: A `size tapered’ solution," Progress In Electromagnetics Research Letters, Vol. 36, 121-131, 2013.
doi:10.2528/PIERL12092705 Google Scholar
9. Tang, B., X. Yang, H. Wu, and W. Peng, "Research on clutter spectra and STAP for sparse antenna arrays," International Conference on Communications, Circuits and Systems (ICCCAS), Vol. 1, 280-283, Chengdu, China, Nov. 2013. Google Scholar
10. Mendel, J. M., "Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications," Proceedings of the IEEE, Vol. 79, No. 3, 278-305, Mar. 1991.
doi:10.1109/5.75086 Google Scholar
11. Cardoso, J. F. and E. Moulines, "Asymptotic performance analysis ofdirection finding algorithms based on fourth order cumulants," IEEE Trans. Signal Process., Vol. 43, No. 1, 214-224, Jan. 1995.
doi:10.1109/78.365301 Google Scholar
12. Gonen, E. and J. M. Mendel, "Applications of cumulants to array processing --- Part VI: Polarization and direction of arrival estimation with minimally constrained arrays," IEEE Trans. Signal Process., Vol. 47, No. 9, 2589-2592, Sep. 1999.
doi:10.1109/78.782216 Google Scholar
13. De Lathauwer, L., B. De Moor, and J. Vandewalle, "ICA techniques formore sources than sensors," Proc. Workshop Higher Order Statistics, Caesara, Israel, Jun. 1999. Google Scholar
14. Ferreol, A., L. Albera, and P. Chevalier, "Fourth order blind identification of under determined mixtures of sources (FOBIUM)," Proc. ICASSP, 41-44, Hong Kong, Apr. 2003. Google Scholar
15. Albera, L., A. Ferreol, P. Comon, and P. Chevalier, "Blind identification of overcomplete mixtures of sources (BIOME)," Linear Algebra and Its Applications, Vol. 391, 3-30, Nov. 2004. Google Scholar
16. Chevalier, P., A. Ferreol, and L. Albera, "High resolution direction finding from higher order statistics: The 2q-MUSIC algorithm," IEEE Trans. Signal Process., Vol. 54, No. 8, 2986-2997, Aug. 2006.
doi:10.1109/TSP.2006.877661 Google Scholar
17. Birot, G., L. Albera, and P. Chevalier, "Sequential high-resolution direction finding from higher order statistics," IEEE Trans. Signal Process., Vol. 58, No. 8, 4144-4155, Aug. 2010.
doi:10.1109/TSP.2010.2049569 Google Scholar
18. Wang, F., X. Cui, and M. Lu, "Direction finding using higher order statistics without redundancy," IEEE Signal Processing Letters, Vol. 20, No. 5, 495-498, May 2013.
doi:10.1109/LSP.2013.2252010 Google Scholar
19. Dogan, M. C. and J. M. Mendel, "Applications of cumulants to array processing --- Part I: Aperture extension and array calibration," IEEE Trans. Signal Process., Vol. 43, No. 5, 1200-1216, May 1995.
doi:10.1109/78.382404 Google Scholar
20. Chevalier, P. and A. Ferreol, "On the virtual array concept for the fourthorder direction finding problem," IEEE Trans. Signal Process., Vol. 47, No. 9, 2592-2595, Sep. 1999.
doi:10.1109/78.782217 Google Scholar
21. Chevalier, P., L. Albera, A. Ferreol, and P. Comon, "On the virtual array concept for higher order array processing," IEEE Trans. Signal Process., Vol. 53, No. 4, 1254-1271, Apr. 2005.
doi:10.1109/TSP.2005.843703 Google Scholar
22. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., Vol. 58, No. 8, 4167-4181, Aug. 2010.
doi:10.1109/TSP.2010.2049264 Google Scholar
23. Vouras, P., "Fully adaptive space-time processing on nested arrays," IEEE Radar Conference, 0858-0863, Virginia, USA, May 2015. Google Scholar
24. Morabito, A. F., A. R. Lagana, G. Sorbello, and T. Isernia, "Mask-constrained power synthesis of maximally sparse linear arrays through a compressive-sensing-driven strategy," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 10, 1384-1396, Oct. 2015.
doi:10.1080/09205071.2015.1046561 Google Scholar