1. Yablonovitch, E., "Photonic band-gap structures," J. Opt. Soc. Am. B, Vol. 10, No. 2, 13, 1993.
doi:10.1364/JOSAB.10.000283 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 4, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Amir Hosseini, H. N. and Yehia Massouda, "Triangular lattice plasmonic photonic band gaps in subwavelength metal-insulator-metal waveguide structures," Appl. Phys. Lett., Vol. 92, 3, 2008. Google Scholar
4. Brand, S., R. A. Abram, and M. A. Kaliteevski, "Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods," Phys. Rev. B, Vol. 75, 7, 2007. Google Scholar
5. Crist, A., S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Plasmon polaritons in a metallic photonic crystal slab," Phys. Status Solidi, Vol. 5774, No. 5, 1393-1396, 2010. Google Scholar
6. El-Kady, I., M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B, Vol. 62, No. 23, 4, 2000.
doi:10.1103/PhysRevB.62.15299 Google Scholar
7. Ghoshal, A. and P. G. Kik, "Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays," J. Appl. Phys., Vol. 103, 8, 2008. Google Scholar
8. Ito, T. and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B, Vol. 64, 8, 2001. Google Scholar
9. Keskinen, M. J., P. Loschialpo, D. Forester, and J. Schelleng, "Photonic band gap structure and transmissivity of frequency-dependent metallic-dielectric systems," transmissivity of frequency-dependent metallic-dielectric systems, Vol. 88, No. 10, 6, 2000. Google Scholar
10. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B, Vol. 55, No. 12, 18, 1997.
doi:10.1103/PhysRevB.55.7427 Google Scholar
11. Kuzmiak, V. and A. A. Maradudin, "Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components," Phys. Rev. B, Vol. 58, No. 11, 22, 1998.
doi:10.1103/PhysRevB.58.7230 Google Scholar
12. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B, Vol. 50, No. 23, 10, 1994.
doi:10.1103/PhysRevB.50.16835 Google Scholar
13. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express, Vol. 11, No. 7, 9, 2003.
doi:10.1364/OE.11.000746 Google Scholar
14. Moreno, E., D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B, Vol. 65, 10, 2002. Google Scholar
15. O’Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Physics Condens. Matter, Vol. 14, No. 15, 11, 2002. Google Scholar
16. Ortuno, R., C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, "Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays," Phys. Rev. B, Vol. 79, 10, 2009. Google Scholar
17. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett., Vol. 69, No. 19, 4, 1992.
doi:10.1103/PhysRevLett.69.2772 Google Scholar
18. Pimenov, A. and A. Loidl, "Conductivity and permittivity of two-dimensional metallic photonic crystals," Phys. Rev. Lett., Vol. 96, 4, 2006. Google Scholar
19. Sakoda, K., N. Kawai, and T. Ito, "Photonic bands of metallic systems. I. Principle of calculation and accuracy," Phys. Rev. B, Vol. 64, 8, 2001. Google Scholar
20. Ustyantsev, M. A., L. F. Marsal, J. Ferre-Borrull, and J. Pallares, "Effect of the dielectric background on dispersion characteristics of metallo-dielectric photonic crystals," Opt. Commnuications, Vol. 260, 5, 2006. Google Scholar
21. Xu, X., Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, "Effective plasma frequency in one-dimensional metallic-dieletric photonic crystals," Appl. Phys. Lett., Vol. 86, 3, 2005.
doi:10.1063/1.1922080 Google Scholar
22. Zeid, A. and H. Baudrand, "Electromagnetic scattering by metallic holes and its applications in microwave circuit design," microwave circuit design, Vol. 50, No. 4, 1198-1206, 2002. Google Scholar
23. Zhao, Y. and D. R. Grischkowsky, "2-D terahertz metallic photonic crystals in parallel-plate waveguides," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 8, 2007.
doi:10.1109/TMTT.2007.892798 Google Scholar
24. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, 13, 2010. Google Scholar
25. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Band gap calculation on 2D square lattice metallic slab photonic crystals with air rods," 3rd International Meeting on Frontiers of Physics 2009, Kuala Lumpur, Malaysia, 2009. Google Scholar
26. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Band gap study using plane wave expansion method for metallic slab with air rods in E polarizing mode," Chinese J. Phys., Vol. 47, No. 6, 10, 2009. Google Scholar
27. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Dielectric slab photonic crystals containing metallic components for E polarization mode," Appl. Phys. Rev., Vol. 2, No. 2, 2010. Google Scholar
28. Nenninger, G. G., P. Tobiska, J. Homola, and S. S. Yee, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors," Sensors Actuators B Chem., Vol. 74, No. 1-3, 145-151, Apr. 2001.
doi:10.1016/S0925-4005(00)00724-3 Google Scholar
29. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuators B Chem., Vol. 54, No. 1-2, 3-15, Jan. 1999. Google Scholar
30. Tiwari, K., S. C. Sharma, and N. Hozhabri, "High performance surface plasmon sensors: Simulations and measurements," J. Appl. Phys., Vol. 118, No. 9, 93105, Sep. 2015. Google Scholar
31. Homola, J. and Ed., Surface Plasmon Resonance Based Sensors, Vol. 4, Springer Berlin Heidelberg, 2006.
32. Laude, V., Y. Achaoui, S. Benchabane, and A. Khelif, "Plane wave expansion method for phononic crystals: Review and prospects,", 2009. Google Scholar
33. Ferre-Borrull, J., E. Xifre-Perez, M. Lluis, F. Marsal, and J. Pallares, "Real metals in metallo-dielectric photonic crystals in the visible," 2007 Spanish Conference on Electron Devices, 4, 2007. Google Scholar
34. Reinhard, B., G. Torosyan, and R. Beigang, "Band structure of terahertz metallic photonic crystals with high metal filling factor," Appl. Phys. Lett., Vol. 92, No. 20, 2059, 2008. Google Scholar
35. Zhang, J., L. Cai, W. Bai, and G. Song, "Flat surface plasmon polariton bands in Bragg grating waveguide for slow light," J. Light. Technol., Vol. 28, No. 14, 2030-2036, Jul. 2010. Google Scholar
36. Gadot, F., A. de Lustrac, J.-M. Lourtioz, T. Brillat, A. Ammouche, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," J. Appl. Phys., Vol. 85, No. 12, 8499-8501, May 1999. Google Scholar
37. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, No. 1, 67-79, 2010. Google Scholar
38. Low, K. L., M. Z. Mat Jafri, and S. A. Khan, "An investigation of surface plasmon effects on metallic photonic crystals in H polarization," The 8th International Conference on Metamaterials, Photonic Crystals and Plasmonics, 2017. Google Scholar
39. Kittel, C., Introduction to Solid State Physics, Wiley, 2005.
40. Sakoda, K., Optical Properties of Photonic Crystals, 2005.
41. Qiu, M. and S. He, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions," Phys. Rev. B, Vol. 61, No. 19, 6, 2000. Google Scholar