Air and Missile Defense College
Air Force Engineering University
China
HomepageFundamental science on EHF Laboratory
University of Electronic Science and Technology of China
China
Homepage1. Tian, Y., et al. "A Ka-band TDD front-end chip with 24.7% bandwidth and temperature compensation technology," IEICE Electronics Express, Vol. 14, No. 9, 20170350-20170350, 2017.
doi:10.1587/elex.14.20170350 Google Scholar
2. Roh, W., et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750 Google Scholar
3. Curtis, J., Z. Hongyu, and F. Aryanfar, "A fully integrated Ka-band front end for 5G transceiver," IEEE International Microwave Symposium (IMS), 1-3, 2016. Google Scholar
4. Li, Q. and Y. P. Zhang, "CMOS T/R switch design: Towards ultra-wideband and higher frequency," IEEE Journal of Solid-State Circuits, Vol. 42, No. 3, 563-570, 2007.
doi:10.1109/JSSC.2006.891442 Google Scholar
5. Shirakawa, K., Y. Kawasaki, Y. Ohashi, and N. Okubo, "A 15/60 GHz one-stage MMIC frequency quadrupler," IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 35-38, 1996. Google Scholar
6. Lin, K. Y., Y. J. Wang, D. C. Niu, and H. Wang, "Millimeter-wave MMIC single-pole-double-throw passive HEMT switches using impedance-transformation networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1076-1085, 2003.
doi:10.1109/TMTT.2003.809676 Google Scholar
7. Lin, K. Y., W. H. Tu, P. Y. Chen, and H. Y. Chang, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1798-1808, 2004.
doi:10.1109/TMTT.2004.831574 Google Scholar
8. Chou, H. T., Z. L. Ke, and H. K. Chiou, "A low-power, compact size millimeter-wave two-stage current-reused low noise amplifier in 90-nm CMOS technology," Asia Pacific Microwave Conference Proceedings, 750-752, 2012. Google Scholar
9. Gong, K., W. Hong, Y. Zhang, P. Chen, and C. J. You, "Substrate integrated waveguide quasi-elliptic filters with controllable electric and magnetic mixed coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3071-3078, 2012.
doi:10.1109/TMTT.2012.2209437 Google Scholar
10. Djerafi, T., K. Wu, and D. Deslandes, "A temperature-compensation technique for substrate integrated waveguide cavities and filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2448-2455, 2012.
doi:10.1109/TMTT.2012.2201741 Google Scholar
11. Farhan Shafique, M. and I. D. Robertson, "Laser machining of microvias and trenches for substrate integrated waveguides in LTCC technology," European Microwave Conference, 272-275, 2009. Google Scholar
12. Schuster, C., G. Leonhardt, and W. Fichtner, "Electromagnetic simulation of bonding wires and comparison with wide band measurements," IEEE Transactions on Advanced Packaging, Vol. 23, No. 1, 69-79, 2000.
doi:10.1109/6040.826764 Google Scholar
13. Lim, J. H., D. H. Kwon, J. S. Rieh, S. W. Kim, and S. W. Hwang, "RF characterization and modeling of various wire bond transitions," IEEE Transactions on Advanced Packaging, Vol. 28, No. 4, 772-778, 2005.
doi:10.1109/TADVP.2005.853554 Google Scholar
14. Mouthaan, K., R. Tinti, M. D. Kok, H. C. D. Graaff, J. L. Tauritz, and J. Slotboom, "Microwave modelling and measurement of the self- and mutual inductance of coupled bondwires," Bipolar/BiCMOS Circuits and Technology Meeting, 166-169, 1997. Google Scholar
15. Mertens, K. L. R. and M. S. J. Steyaert, "A 700-MHz 1-W fully differential CMOS class-E power amplifier," IEEE Journal of Solid-State Circuits, Vol. 37, No. 2, 137-141, 2002.
doi:10.1109/4.982419 Google Scholar