1. Bolin, T., A. Derneryd, G. Kristensson, et al. "Two antenna receive diversity performance in indoor environment," Electron. Lett., Vol. 41, No. 22, 1205-1206, 2005.
doi:10.1049/el:20053365 Google Scholar
2. Ko, S. C. K. and R. D. Murch, "Compact integrated diversity antenna for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, No. 6, 954-960, 2001.
doi:10.1109/8.931154 Google Scholar
3. "First report and order in the matter of revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems FCC,", ET-Docket 98-153, 2002.
doi:10.1109/8.931154 Google Scholar
4. See, T. S. P. and Z. N. Chen, "An ultrawideband diversity antenna," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1597-1605, 2009.
doi:10.1109/TAP.2009.2019908 Google Scholar
5. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15090103 Google Scholar
6. Rajagopalan, A., G. Gupta, A. S. Konanur, et al. "Increasing channel capacity of an ultrawideband MIMO system using vector antennas," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2880-2887, 2007.
doi:10.1109/TAP.2007.905938 Google Scholar
7. Khan, M. S., A. D. Capobianco, A. L. Najam, I. Shoaib, E. Autizi, and M. F. Shafique, "Compact UWB-MIMO antenna array with a floating digitated decoupling structure," IET Microw., Antennas & Propag., Vol. 8, No. 10, 747-753, 2014.
doi:10.1049/iet-map.2013.0672 Google Scholar
8. Zhang, S., Z. N. Ying, J. Xiong, et al. "Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1279-1282, 2009.
doi:10.1109/LAWP.2009.2037027 Google Scholar
9. Liu, L., S. W. Cheung, and T. I. Yuk, " Compact MIMO antenna for portable devices in UWB applications," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4257-4264, 2013.
doi:10.1109/TAP.2013.2263277 Google Scholar
10. Chacko, B. P., G. Augustin, and T. A. Denidni, "Uniplanar slot antenna for ultrawideband polarization-diversity applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 88-91, 2013.
doi:10.1109/LAWP.2013.2242841 Google Scholar
11. Iqbal, A., O. A. Saraereh, A.W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2759, 2018.
doi:10.1109/ACCESS.2017.2785232 Google Scholar
12. Duan, Z., B.-I. Wu, J.-A. Kong, F. Kong, and S. Xi, "Enhancement of radiation properties of a compact planar antenna using transformation media as substrates," Progress In Electromagnetics Research, Vol. 83, 375-384, 2008.
doi:10.2528/PIER08062703 Google Scholar
13. Wang, F., Z. Duan, X. Tang, et al. "Compact high isolation WLAN MIMO antenna based on CRLH," iWEM 2015, 1-2, Taipei, China, 2015. Google Scholar
14. Yang, F. and Y. Rahmat-Sami, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983 Google Scholar
15. Yang, L., M. Y. Fan, F. L. Chen, et al. "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322 Google Scholar
16. Rani, M. S. A., S. K. A. Rahim, H. Rezaie, et al. "Directional UWB antenna with a parabolic ground structure and split ring resonator for a 5.80 GHz band notch," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 1, 14-22, 2013.
doi:10.1080/09205071.2012.737456 Google Scholar
17. Wang, F., Z. Y. Duan, T. Tang, et al. "A new metamaterial-based UWB MIMO antenna," IEEE IWS 2015, 1-4, Shenzhen, China, 2015. Google Scholar
18. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703 Google Scholar
19. Li, Q., A. P. Feresidis, M. Mavridou, et al. "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1170-1173, 2015. Google Scholar
20. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, 2010.
doi:10.1109/TAP.2010.2052560 Google Scholar
21. Ferrer, P. J., J. M. Gonzalez-Arbesu, and J. Romeu, "Decorrelation of two closely spaced antennas with a metamaterial AMC surface," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1414-1417, 2008.
doi:10.1002/mop.23365 Google Scholar
22. Zhu, J., S. Li, S. Liao, and Q. Xue, "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 17, 458-462, 2018.
doi:10.1109/LAWP.2018.2795018 Google Scholar
23. Ketzaki, D. A. and T. V. Yioultsis, "Metamaterial-based design of planar compact MIMO monopoles," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2758-2766, 2013.
doi:10.1109/TAP.2013.2243813 Google Scholar
24. Abdalla, M. A. and A. A. Ibrahim, "Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1452-1455, 2013.
doi:10.1109/LAWP.2013.2288338 Google Scholar
25. Khan, M. S., A.-D. Capobianco, S. M. Asif, et al. "A compact CSRR enabled UWB MIMO antenna," IEEE Antennas Wireless Propag. Lett., Vol. 58, 808-812, 2016. Google Scholar
26. Duan, Z., J. S. Hummelt, M. A. Shapiro, et al. "Sub-wavelength waveguide loaded by a complementary electric metamaterial for vacuum electron devices," Phys. Plasmas, Vol. 21, No. 10, 103301, 2014.
doi:10.1063/1.4897392 Google Scholar
27. Pendry, J. B., A. J. Holden, and D. J. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
28. Deng, J. Y., L. X. Guo, and X. L. Liu, "An ultrawideband MIMO antenna with a high isolation," IEEE Antennas Wireless Propag. Lett., Vol. 15, 182-185, 2016.
doi:10.1109/LAWP.2015.2437713 Google Scholar
29. Mao, C. X. and Q. X. Chu, "Compact co-radiator UWB-MIMO antenna with dual polarization," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4474-4480, 2014.
doi:10.1109/TAP.2014.2333066 Google Scholar
30. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2015. Google Scholar
31. Li, J. F., Q. X. Chu, Z. H. Li, et al. "Compact dual band-notched UWB MIMO antenna with high isolation ," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4759-4766, 2013.
doi:10.1109/TAP.2013.2267653 Google Scholar
32. Liu, L., S. W. Cheung, Y. F. Weng, and T. I. Yuk, "Cable effects on measuring small planar UWB monopole antennas," Ultra Wideband Current Status and Future Trends, edited by Mohammad Abdul Matin, 2012. Google Scholar
33. Manteghi, M. and Y. Rahmat-Samii, "Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 466-474, 2005.
doi:10.1109/TAP.2004.838794 Google Scholar
34. Hallbjorner, P., "The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas," IEEE Antennas Wireless Propag. Lett., Vol. 4, 97-99, 2005.
doi:10.1109/LAWP.2005.845913 Google Scholar
35. Tian, R., B. K. Lau, and Z. Ying, "Multiplexing efficiency of MIMO antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 183-186, 2011.
doi:10.1109/LAWP.2011.2125773 Google Scholar