1. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104 Google Scholar
2. Hudlika, M., J. Machac, and I. Nefedov, "A triple wire medium as an isotropic negative permittivity metamaterial," Progress In Electromagnetics Research, Vol. 65, 233-246, 2006.
doi:10.2528/PIER06102703 Google Scholar
3. Weldon, T. P., K. Miehle, R. S. Adams, and K. Daneshvar, "A wideband microwave double-negative metamaterial with non-Foster loading," Proc. IEEE Southeastcon, 1-5, 2012. Google Scholar
4. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
5. De, T. M., M. Luque, N. R. K. Devarapalli, and C. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractals," Progress In Electromagnetics Research, Vol. 131, 185-194, 2012. Google Scholar
6. Smith, K. L. and R. S. Adams, "A λ◦/60 spherical spiral metamaterial for negative permeability and negative permittivity," IEEE Int. Symp. on Ant. and Prop. (APSURSI), 719-720, 2016. Google Scholar
7. Miyamaru, F., Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, "Terahertz electric response of fractal metamaterial structures," Phys. Rev. B, Vol. 77, 045124.1-045124.6, 2008. Google Scholar
8. Li, D. and J. Mao, "Koch-like sided Sierpinski gasket multifractal dipole antenna," Progress In Progress In, Vol. 126, 399-427, 2012. Google Scholar
9. Smith, Smith, R. S. Adams, and T. P. Weldon, "A novel broadband fractal metamaterial unit cell," IEEE Int. Symp. on Ant. and Prop., 549-550, 2014. Google Scholar
10. Khan, O., Z. Islam, I. Rashid, F. Bhatti, and Q. Islam, "Novel miniaturized Koch pentagonal fractal antenna for multiband wireless applications," Progress In Electromagnetics Research, Vol. 141, 693-710, 2013.
doi:10.2528/PIER13060904 Google Scholar
11. Li, D. and J. Mao, "Sierpinskized Koch-like sided multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 130, 207-224, 2012.
doi:10.2528/PIER12060108 Google Scholar
12. Liu, R., A. Degiron, J. J. Mock, and D. R. Smith, "Negative index material composed of electric and magnetic resonators," Appl. Phys. Lett., Vol. 90, No. 26, 263504.1-263504.3, 2007. Google Scholar
13. Szabo, Z., G. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310 Google Scholar
14. Shehan, J.W., R. S. Adams, and T. P.Weldon, "Metamaterial measurement in a cylindrical coaxial fixture with consideration for inter-element coupling," IEEE Radio Sci. Mtg., 138-138, 2014. Google Scholar
15. 15, H., G. Wang, and Q. Peng, "Fractal-shaped complementary electric-LC resonator for bandstop filter ," Progress In Electromagnetics Research, Vol. 23, 205-217, 2011. Google Scholar
16. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications," J. Appl. Phys., Vol. 116, 083705-083705, 2014.
doi:10.1063/1.4893751 Google Scholar