Vol. 84
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-05-11
The Direction-of-Arrival and Polarization Estimation Using Coprime Array: A Reconstructed Covariance Matrix Approach
By
Progress In Electromagnetics Research C, Vol. 84, 23-33, 2018
Abstract
In this paper, we propose a novel direction of arrival (DOA) and polarization estimation method to address the problem of a coprime polarization-sensitive array (PSA). For a PSA, there may be a zero element in the covariance matrix when the polarized signal comes from a specific direction. To overcome this problem, we utilize the reconstructed received data to obtain a new covariance matrix whose elements are all non-zero. Then, the coprime MUSIC and sparse signal reconstruction algorithms are used for DOA estimation. In addition, the power of noise can be estimated in this polarization model, which improves upon the sparse signal reconstruction algorithm. Compared with the normalized algorithm, the proposed method offers favorable performance in terms of accuracy. Furthermore, our method can identify the peaks of the true DOAs at a low signal-to-noise ratio (SNR). The simulation results demonstrate the effectiveness of the proposed method.
Citation
Wen Dong, Ming Diao, and Lipeng Gao, "The Direction-of-Arrival and Polarization Estimation Using Coprime Array: A Reconstructed Covariance Matrix Approach," Progress In Electromagnetics Research C, Vol. 84, 23-33, 2018.
doi:10.2528/PIERC18032008
References

1. Yuan, X., "Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor," IEEE Transactions on Signal Processing, Vol. 60, 1270-1282, 2012.
doi:10.1109/TSP.2011.2177263        Google Scholar

2. Si, W., P. Zhao, and Z. Qu, "Two-dimensional DOA and polarization estimation for a mixture of uncorrelated and coherent sources with sparsely-distributed vector sensor array," Sensors, Vol. 16, 1-23, 2016.
doi:10.1109/JSEN.2016.2616227        Google Scholar

3. Goossens, R. and H. Rogier, "A hybrid UCA-RARE/root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Transactions on Antennas and Propagation, Vol. 55, 841-849, 2007.
doi:10.1109/TAP.2007.891848        Google Scholar

4. Wong, K. T., L. Li, and M. D. Zoltowski, "Root-MUSIC-based direction-finding and polarization-estimation using diversely-polarized possibly-collocated antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 3, 129-132, 2004.
doi:10.1109/LAWP.2004.831083        Google Scholar

5. Rahamim, D., J. Tabrikian, and R. Shavit, "Source localization using vector sensor array in a multipath environment," IEEE Transactions on Signal Processing, Vol. 52, 3096-3103, 2004.
doi:10.1109/TSP.2004.836456        Google Scholar

6. He, J., S. Jiang, and J. Wang, "Polarization difference smoothing for direction finding of coherent signals," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, 469-480, 2010.
doi:10.1109/TAES.2010.5417176        Google Scholar

7. Xu, Y. and Z. Liu, "Polarimetric angular smoothing algorithm for an electromagnetic vector-sensor array," IET Radar Sonar Navig., Vol. 1, 230-240, 2007.
doi:10.1049/iet-rsn:20050108        Google Scholar

8. Diao, M. and C. L. An, "Direction finding of coexisted independent and coherent signals using electromagnetic vector sensor," J. Syst. Eng. Electron., Vol. 23, 481-487, 2012.
doi:10.1109/JSEE.2012.00061        Google Scholar

9. Yuan, X., K. T. Wong, Z. Xu, and K. Agrawal, "Various triad compositions of collocated dipoles/loops, for direction finding and polarization estimation," IEEE Sensors Journal, Vol. 12, 1763-1771, 2012.
doi:10.1109/JSEN.2011.2179532        Google Scholar

10. Wong, K. T. and X. Yuan, "Vector cross-product direction-finding with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Transactions on Signal Processing, Vol. 59, 160-171, 2010.
doi:10.1109/TSP.2010.2084085        Google Scholar

11. Song, Y., X. Yuan, and K. T. Wong, "Corrections to vector cross-product direction-finding with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Transactions on Signal Processing, Vol. 62, 1028-1030, 2014.
doi:10.1109/TSP.2013.2290501        Google Scholar

12. Song, Y., K. T. Wong, and F. Chen, "`Blind' calibration of vector sensors whose dipole/loop triads deviate from their nominal gains/phases/orientations/locations," Radio Science, Vol. 52, 1170-1189, 2017.
doi:10.1002/2017RS006340        Google Scholar

13. Wong, K. T., Y. Song, C. J. Fulton, S. Khan, and W.-Y. Tam, "Electrically long dipoles in a collocated/orthogonal triad --- For direction finding and polarization estimation," IEEE Transactions on Antennas and Propagation, Vol. 65, 6057-6067, 2017.
doi:10.1109/TAP.2017.2748183        Google Scholar

14. Kitavi, D. M., K. T. Wong, M. Zou, and K. Agrawal, "A lower bound of the estimation error of an emitter’s direction-of-arrival/polarization, for a collocated triad of orthogonal dipoles/loops that fail randomly," IET Microwaves, Antennas and Propagation, Vol. 11, 961-970, 2017.
doi:10.1049/iet-map.2016.0918        Google Scholar

15. Au-Yeung, C. K. and K. T. Wong, "CRB: Sinusoid-sources estimation using collocated dipoles/loops," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, 94-109, 2009.
doi:10.1109/TAES.2009.4805266        Google Scholar

16. Xu, Y., Z. Liu, K. T. Wong, and J. Cao, "Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, 1291-1308, 2008.
doi:10.1109/TAES.2008.4667710        Google Scholar

17. Wong, K. T., "Direction finding/polarization estimation --- Dipole and/or loop triad(s)," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, 679-684, 2001.
doi:10.1109/7.937478        Google Scholar

18. Wong, K. T., "Blind beamforming/geolocation for wideband-FFHs with unknown hop-sequences," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, 65-76, 2001.
doi:10.1109/7.913668        Google Scholar

19. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation," IEEE Transactions on Antennas and Propagation, Vol. 45, 1467-1474, 1997.
doi:10.1109/8.633852        Google Scholar

20. Cheng, Q. and Y. Hua, "Performance analysis of the MUSIC and Pencil-MUSIC algorithms for diversely polarized array," IEEE Transactions on Signal Processing, Vol. 32, 284-299, 1996.        Google Scholar

21. Wong, K. T. and M. D. Zoltowski, "Self-initiating MUSIC direction finding and polarization estimation in spatio-polarizational beamspace," IEEE Transactions on Antennas and Propagation, Vol. 48, 1235-1245, 2000.
doi:10.1109/8.855485        Google Scholar

22. Zoltowski, M. D. and K. T. Wong, "ESPRIT-based 2D direction finding with a sparse array of electromagnetic vector-sensors," IEEE Transactions on Signal Processing, Vol. 48, 2195-2204, 2000.
doi:10.1109/78.852000        Google Scholar

23. Li, J. and R. T. Compton, "Angle and polarization esrimation using ESPRIT with a polarization sensitive array," IEEE Transactions on Antennas and Propagation, Vol. 39, 1376-1383, 1991.
doi:10.1109/8.99047        Google Scholar

24. Miron, S., Y. Song, D. Brie, and K. T. Wong, "Multilinear approach of direction finding using a sensor-array with multiple scales of spatial invariance," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, 2057-2070, 2015.
doi:10.1109/TAES.2015.130576        Google Scholar

25. Wong, K. T. and M. D. Zoltowski, "Direction-finding with sparse rectangular dual-size spatial invariance arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, 1320-1336, 1998.
doi:10.1109/7.722717        Google Scholar

26. Wong, K. T. and M. D. Zoltowski, "Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations," IEEE Transactions on Antennas and Propagation, Vol. 48, 671-681, 2000.
doi:10.1109/8.855485        Google Scholar

27. Zoltowski, M. D. and K. T. Wong, "Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid," IEEE Transactions on Signal Processing, Vol. 48, 2205-2210, 2000.
doi:10.1109/78.852001        Google Scholar

28. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, 4167-4181, 2010.
doi:10.1109/TSP.2010.2049264        Google Scholar

29. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, 573-586, 2011.
doi:10.1109/TSP.2010.2089682        Google Scholar

30. Zhou, C., Z. Shi, and Y. Gu, "DECOM: DOA estimation with combined MUSIC for coprime array," IEEE Int. Conf. Wireless Commun. Signal Process. (WCSP), 1-5, 2013.        Google Scholar

31. Liu, C. L. and P. P. Vaidyanathan, "Remarks on the spatial smoothing step in coarray MUSIC," IEEE Signal Process. Lett., Vol. 22, 1438-1442, 2015.
doi:10.1109/LSP.2015.2409153        Google Scholar

32. Boudaher, E., Y. Jia, F. Ahmad, and M. G. Amin, "Multi-frequency co-prime arrays for high-resolution direction-of-arrival estimation," IEEE Signal Process., Vol. 63, 3797-3808, 2015.
doi:10.1109/TSP.2015.2432734        Google Scholar

33. Pal, P., P. P. Vaidyanathan, F. Ahmad, and M. G. Amin, "Coprime sampling and the MUSIC algorithm," IEEE Digital Signal Proc. Workshop and IEEE Signal Proc., Vol. 47, 289-294, 2011.        Google Scholar

34. Friedlander, B. and A. J. Weiss, "Direction finding using spatial smoothing with interpolated arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, 574-587, 1992.
doi:10.1109/7.144583        Google Scholar

35. Shi, Z., C. Zhou, Y. Gu, and N. A. Goodman, "Source estimation using coprime array: A sparse reconstruction perspective," IEEE Sensors Journal, Vol. 17, 755-765, 2017.
doi:10.1109/JSEN.2016.2637059        Google Scholar

36. Tan, Z., Y. C. Eldar, and A. Nehorai, "Direction of arrival estimation using co-prime arrays: A super resolution viewpoint," IEEE Transactions on Signal Processing, Vol. 62, 5565-5576, 2014.
doi:10.1109/TSP.2014.2354316        Google Scholar

37. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation-," IEEE Transactions on Signal Processing, Vol. 63, 1377-1390, 2015.
doi:10.1109/TSP.2015.2393838        Google Scholar

38. Dong, W., M. Diao, L. Gao, and L. Liu, "A low-complexity DOA and polarization method of polarization-sensitive array," Sensors, Vol. 17, 2017.
doi:10.3390/s17061377        Google Scholar

39. Zhang, Y. D., M. G. Amin, and H. B. imed, "Sparsity-based DOA estimation using co-prime arrays," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 3967-3971, 2013.        Google Scholar