1. Yuan, X., "Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor," IEEE Transactions on Signal Processing, Vol. 60, 1270-1282, 2012.
doi:10.1109/TSP.2011.2177263 Google Scholar
2. Si, W., P. Zhao, and Z. Qu, "Two-dimensional DOA and polarization estimation for a mixture of uncorrelated and coherent sources with sparsely-distributed vector sensor array," Sensors, Vol. 16, 1-23, 2016.
doi:10.1109/JSEN.2016.2616227 Google Scholar
3. Goossens, R. and H. Rogier, "A hybrid UCA-RARE/root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Transactions on Antennas and Propagation, Vol. 55, 841-849, 2007.
doi:10.1109/TAP.2007.891848 Google Scholar
4. Wong, K. T., L. Li, and M. D. Zoltowski, "Root-MUSIC-based direction-finding and polarization-estimation using diversely-polarized possibly-collocated antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 3, 129-132, 2004.
doi:10.1109/LAWP.2004.831083 Google Scholar
5. Rahamim, D., J. Tabrikian, and R. Shavit, "Source localization using vector sensor array in a multipath environment," IEEE Transactions on Signal Processing, Vol. 52, 3096-3103, 2004.
doi:10.1109/TSP.2004.836456 Google Scholar
6. He, J., S. Jiang, and J. Wang, "Polarization difference smoothing for direction finding of coherent signals," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, 469-480, 2010.
doi:10.1109/TAES.2010.5417176 Google Scholar
7. Xu, Y. and Z. Liu, "Polarimetric angular smoothing algorithm for an electromagnetic vector-sensor array," IET Radar Sonar Navig., Vol. 1, 230-240, 2007.
doi:10.1049/iet-rsn:20050108 Google Scholar
8. Diao, M. and C. L. An, "Direction finding of coexisted independent and coherent signals using electromagnetic vector sensor," J. Syst. Eng. Electron., Vol. 23, 481-487, 2012.
doi:10.1109/JSEE.2012.00061 Google Scholar
9. Yuan, X., K. T. Wong, Z. Xu, and K. Agrawal, "Various triad compositions of collocated dipoles/loops, for direction finding and polarization estimation," IEEE Sensors Journal, Vol. 12, 1763-1771, 2012.
doi:10.1109/JSEN.2011.2179532 Google Scholar
10. Wong, K. T. and X. Yuan, "Vector cross-product direction-finding with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Transactions on Signal Processing, Vol. 59, 160-171, 2010.
doi:10.1109/TSP.2010.2084085 Google Scholar
11. Song, Y., X. Yuan, and K. T. Wong, "Corrections to vector cross-product direction-finding with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops," IEEE Transactions on Signal Processing, Vol. 62, 1028-1030, 2014.
doi:10.1109/TSP.2013.2290501 Google Scholar
12. Song, Y., K. T. Wong, and F. Chen, "`Blind' calibration of vector sensors whose dipole/loop triads deviate from their nominal gains/phases/orientations/locations," Radio Science, Vol. 52, 1170-1189, 2017.
doi:10.1002/2017RS006340 Google Scholar
13. Wong, K. T., Y. Song, C. J. Fulton, S. Khan, and W.-Y. Tam, "Electrically long dipoles in a collocated/orthogonal triad --- For direction finding and polarization estimation," IEEE Transactions on Antennas and Propagation, Vol. 65, 6057-6067, 2017.
doi:10.1109/TAP.2017.2748183 Google Scholar
14. Kitavi, D. M., K. T. Wong, M. Zou, and K. Agrawal, "A lower bound of the estimation error of an emitter’s direction-of-arrival/polarization, for a collocated triad of orthogonal dipoles/loops that fail randomly," IET Microwaves, Antennas and Propagation, Vol. 11, 961-970, 2017.
doi:10.1049/iet-map.2016.0918 Google Scholar
15. Au-Yeung, C. K. and K. T. Wong, "CRB: Sinusoid-sources estimation using collocated dipoles/loops," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, 94-109, 2009.
doi:10.1109/TAES.2009.4805266 Google Scholar
16. Xu, Y., Z. Liu, K. T. Wong, and J. Cao, "Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, 1291-1308, 2008.
doi:10.1109/TAES.2008.4667710 Google Scholar
17. Wong, K. T., "Direction finding/polarization estimation --- Dipole and/or loop triad(s)," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, 679-684, 2001.
doi:10.1109/7.937478 Google Scholar
18. Wong, K. T., "Blind beamforming/geolocation for wideband-FFHs with unknown hop-sequences," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, 65-76, 2001.
doi:10.1109/7.913668 Google Scholar
19. Wong, K. T. and M. D. Zoltowski, "Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation," IEEE Transactions on Antennas and Propagation, Vol. 45, 1467-1474, 1997.
doi:10.1109/8.633852 Google Scholar
20. Cheng, Q. and Y. Hua, "Performance analysis of the MUSIC and Pencil-MUSIC algorithms for diversely polarized array," IEEE Transactions on Signal Processing, Vol. 32, 284-299, 1996. Google Scholar
21. Wong, K. T. and M. D. Zoltowski, "Self-initiating MUSIC direction finding and polarization estimation in spatio-polarizational beamspace," IEEE Transactions on Antennas and Propagation, Vol. 48, 1235-1245, 2000.
doi:10.1109/8.855485 Google Scholar
22. Zoltowski, M. D. and K. T. Wong, "ESPRIT-based 2D direction finding with a sparse array of electromagnetic vector-sensors," IEEE Transactions on Signal Processing, Vol. 48, 2195-2204, 2000.
doi:10.1109/78.852000 Google Scholar
23. Li, J. and R. T. Compton, "Angle and polarization esrimation using ESPRIT with a polarization sensitive array," IEEE Transactions on Antennas and Propagation, Vol. 39, 1376-1383, 1991.
doi:10.1109/8.99047 Google Scholar
24. Miron, S., Y. Song, D. Brie, and K. T. Wong, "Multilinear approach of direction finding using a sensor-array with multiple scales of spatial invariance," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, 2057-2070, 2015.
doi:10.1109/TAES.2015.130576 Google Scholar
25. Wong, K. T. and M. D. Zoltowski, "Direction-finding with sparse rectangular dual-size spatial invariance arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, 1320-1336, 1998.
doi:10.1109/7.722717 Google Scholar
26. Wong, K. T. and M. D. Zoltowski, "Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations," IEEE Transactions on Antennas and Propagation, Vol. 48, 671-681, 2000.
doi:10.1109/8.855485 Google Scholar
27. Zoltowski, M. D. and K. T. Wong, "Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid," IEEE Transactions on Signal Processing, Vol. 48, 2205-2210, 2000.
doi:10.1109/78.852001 Google Scholar
28. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, 4167-4181, 2010.
doi:10.1109/TSP.2010.2049264 Google Scholar
29. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, 573-586, 2011.
doi:10.1109/TSP.2010.2089682 Google Scholar
30. Zhou, C., Z. Shi, and Y. Gu, "DECOM: DOA estimation with combined MUSIC for coprime array," IEEE Int. Conf. Wireless Commun. Signal Process. (WCSP), 1-5, 2013. Google Scholar
31. Liu, C. L. and P. P. Vaidyanathan, "Remarks on the spatial smoothing step in coarray MUSIC," IEEE Signal Process. Lett., Vol. 22, 1438-1442, 2015.
doi:10.1109/LSP.2015.2409153 Google Scholar
32. Boudaher, E., Y. Jia, F. Ahmad, and M. G. Amin, "Multi-frequency co-prime arrays for high-resolution direction-of-arrival estimation," IEEE Signal Process., Vol. 63, 3797-3808, 2015.
doi:10.1109/TSP.2015.2432734 Google Scholar
33. Pal, P., P. P. Vaidyanathan, F. Ahmad, and M. G. Amin, "Coprime sampling and the MUSIC algorithm," IEEE Digital Signal Proc. Workshop and IEEE Signal Proc., Vol. 47, 289-294, 2011. Google Scholar
34. Friedlander, B. and A. J. Weiss, "Direction finding using spatial smoothing with interpolated arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, 574-587, 1992.
doi:10.1109/7.144583 Google Scholar
35. Shi, Z., C. Zhou, Y. Gu, and N. A. Goodman, "Source estimation using coprime array: A sparse reconstruction perspective," IEEE Sensors Journal, Vol. 17, 755-765, 2017.
doi:10.1109/JSEN.2016.2637059 Google Scholar
36. Tan, Z., Y. C. Eldar, and A. Nehorai, "Direction of arrival estimation using co-prime arrays: A super resolution viewpoint," IEEE Transactions on Signal Processing, Vol. 62, 5565-5576, 2014.
doi:10.1109/TSP.2014.2354316 Google Scholar
37. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation-," IEEE Transactions on Signal Processing, Vol. 63, 1377-1390, 2015.
doi:10.1109/TSP.2015.2393838 Google Scholar
38. Dong, W., M. Diao, L. Gao, and L. Liu, "A low-complexity DOA and polarization method of polarization-sensitive array," Sensors, Vol. 17, 2017.
doi:10.3390/s17061377 Google Scholar
39. Zhang, Y. D., M. G. Amin, and H. B. imed, "Sparsity-based DOA estimation using co-prime arrays," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 3967-3971, 2013. Google Scholar