Vol. 84
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-06-18
GNSS Imaging: a Case Study of Tree Detection Based on BeiDou GEO Satellites
By
Progress In Electromagnetics Research C, Vol. 84, 227-240, 2018
Abstract
Curved trajectories of traditional navigation satellites limit their performance in bistatic radar imaging system. Instead of using common Inclined Geosynchronous Orbit (IGSO)/Medium Earth Orbit (MEO) satellites in motion, a new global navigation satellite system (GNSS) imaging system based on Beidou geosynchronous orbit (GEO) satellites is presented to deal with this problem. The most prominent feature of GEO satellites is that they are stillrelative to the earth. This work includes three parts. First, a reasonable parallel assumption is provided to simplify the geometric topology of the imaging system, and the relevant path delay formula is deduced. Second, the principle of imaging based on multiple GEO satellites is proposed, and the simulation result is presented. Third, the entire signal processing, which uses a multi-correlator, is designed to improve the range resolution. Two imaging experiments targeting at the trees are described and conducted in Wuhan University to verify the imaging system. The first experiment is targeted at isolated trees, and the second experiment is focused on groves along the road. Conclusion can be obtained: the imaging result is highly consistent with the imaging area, which validates the feasibility of the method and confirms the potential use of GNSS imaging system in forest monitoring.
Citation
Songhua Yan, Hui Zhou, and Jianya Gong, "GNSS Imaging: a Case Study of Tree Detection Based on BeiDou GEO Satellites," Progress In Electromagnetics Research C, Vol. 84, 227-240, 2018.
doi:10.2528/PIERC18032504
References

1. Anghel, A., R. Cacoveanu, A. S. Moldovan, A. A. Popescu, M. Datcu, and A. Serban, "Simplified bistatic SAR imaging with a fixed receiver and Terrasar-X as transmitter of opportunity --- First results," Geoscience and Remote Sensing Symposium, 2016.

2. O’Hagan, D. W., H. D. Griffiths, S. M. Ummenhofer, and S. T. Paine, "Elevation pattern analysis of common passive bistatic radar illuminators of opportunity," IEEE Transactions on Aerospace & Electronic Systems, Vol. 53, No. 6, 3008-3019, 2017.
doi:10.1109/TAES.2017.2724378

3. Kubica, V., X. Neyt, and H. Griffiths, "Along-track resolution enhancement for bistatic imaging in burst-mode operation," IEEE Transactions on Aerospace & Electronic Systems, Vol. 52, No. 4, 1568-1575, 2016.
doi:10.1109/TAES.2016.140831

4. Nies, H., F. Behner, S. Reuter, S. Meckel, and O. Loffeld, "Radar imaging and tracking using geostationary communication satellite systems --- A project description," Proceedings of EUSAR 2016: European Conference on Synthetic Aperture Radar, 2016.

5. Borisenkov, A. V., O. V. Goriachkin, V. N. Dolgopolov, and B. G. Zhengurov, "Bistatic SAR based on TV-signal," Proceedings of EUSAR 2014, European Conference on Synthetic Aperture Radar, 2014.

6. Antoniou, M. and M. Cherniakov, "Experimental demonstration of passive GNSS-based SAR imaging modes," IET International Radar Conference 2013, 2013.

7. Antoniou, M., Z. Zeng, F. Liu, and M. Cherniakov, "Experimental demonstration of passive BSAR imaging using navigation satellites and a fixed receiver," IEEE Geoscience & Remote Sensing Letters, Vol. 9, No. 3, 477-481, 2012.
doi:10.1109/LGRS.2011.2172571

8. Ma, H., M. Antoniou, and M. Cherniakov, "Passive GNSS-based SAR resolution improvement using joint Galileo E5 signals," IEEE Geoscience & Remote Sensing Letters, Vol. 12, No. 8, 1640-1644, 2015.
doi:10.1109/LGRS.2015.2417594

9. Santi, F., M. Bucciarelli, D. Pastina, M. Antoniou, and M. Cherniakov, "Spatial resolution improvement in GNSS-based SAR using multistatic acquisitions and feature extraction," IEEE Transactions on Geoscience & Remote Sensing, Vol. 54, No. 10, 6217-6231, 2016.
doi:10.1109/TGRS.2016.2583784

10. Saini, R., R. Zuo, and M. Cherniakov, "Problem of signal synchronisation in space-surface bistatic synthetic aperture radar based on global navigation satellite emissions --- Experimental results," IET Radar Sonar and Navigation, Vol. 4, No. 1, 110-125, 2010.
doi:10.1049/iet-rsn.2008.0121

11. Santi, F., M. Antoniou, and D. Pastina, "Point spread function analysis for GNSS-based multistatic SAR," IEEE Geoscience & Remote Sensing Letters, Vol. 12, No. 2, 304-308, 2015.
doi:10.1109/LGRS.2014.2337054

12. Zhang, Q., M. Antoniou, W. Chang, and M. Cherniakov, "Spatial decorrelation in GNSS-based SAR coherent change detection," IEEE Transactions on Geoscience & Remote Sensing, Vol. 53, No. 1, 219-228, 2014.
doi:10.1109/TGRS.2014.2321145

13. Tzagkas, D., M. Antoniou, and M. Cherniakov, "Coherent change detection experiments with GNSS-based passive SAR," Radar Conference, 2017.

14. Zeng, H. C., P. B. Wang, J. Chen, W. Liu, L. L. Ge, and W. Yang, "A novel general imaging formation algorithm for GNSS-based bistatic SAR," Sensors (Basel), Vol. 16, No. 3, 294, 2016.
doi:10.3390/s16030294

15. Tian, W., T. Zhang, T. Zeng, C. Hu, and T. Long, "Space-surface BISAR based on GNSS signal: Synchronization, imaging and experiment result," Radar Conference, 2014.

16. Tian, W., T. Zhang, C. Hu, X. Yang, and T. Zeng, "Space-surface bistatic SAR using Beidou-2 as illuminator," IEEE International Conference on Computer and Information Technology, 2014.

17. Zeng, T., T. Zhang, W. Tian, and C. Hu, "Space-surface bistatic SAR image enhancement based on repeat-pass coherent fusion with Beidou-2/Compass-2 as illuminators," IEEE Geoscience & Remote Sensing Letters, Vol. 13, No. 12, 1832-1836, 2017.
doi:10.1109/LGRS.2016.2614337

18. Fan, X., F. Liu, T. Zhang, T. Lu, C. Hu, and W. Tian, "Passive SAR with GNSS transmitters: Latest results and research progress," Geoscience and Remote Sensing Symposium, 2017.

19. Usman, M. and D. W. Armitage, "A remote imaging system based on reflected GPS signals," International Conference on Advances in Space Technologies, 2006.

20. Antoniou, M. and M. Cherniakov, "GNSS-based bistatic SAR: A signal processing view," Eurasip Journal on Advances in Signal Processing, Vol. 2013, No. 1, 1-16, 2013.
doi:10.1186/1687-6180-2013-98

21. Manandhar, D., R. Shibasaki, and H. Torimoto, "GPS reflected signal analysis using software receiver," Positioning, Vol. 5, No. 1&2, 29-34, 2006.
doi:10.5081/jgps.5.1.29

22. Richards, M. A., Fundamentals of Radar Signal Processing, 2005.

23. Usman, M. and D. W. Armitage, "Details of an imaging system based on reflected GPS signals and utilizing SAR techniques," Journal of Global Positioning Systems, Vol. 8, No. 1, 2009.
doi:10.5081/jgps.8.1.87

24. Zeng, T., T. Zhang, W. Tian, C. Hu, and X. Yang, "Bistatic SAR imaging processing and experiment results using Beidou-2/Compass-2 as illuminator of opportunity and a fixed receiver," Synthetic Aperture Radar, 302-305, 2015.

25. Zeng, T., D. Ao, C. Hu, T. Zhang, F. Liu, W. Tian, and K. Lin, "Multiangle BSAR imaging based on Beidou-2 navigation satellite system: Experiments and preliminary results," IEEE Transactions on Geoscience & Remote Sensing, Vol. 53, No. 10, 5760-5773, 2015.
doi:10.1109/TGRS.2015.2430312