Vol. 85
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-07-24
Maximum Likelihood Method and Cramer-Rao Low Bound of Angle Estimation for Wide-Band Monopulse Radar
By
Progress In Electromagnetics Research C, Vol. 85, 209-219, 2018
Abstract
The echo signal of wide-band monopulse radar spreads in multiple range cells. Thus, effective utilization of echo signal is an important issue for this kind of radar. Based on parameter estimation model, maximum likelihood method is proposed in this paper, which collects all the energy spreading in multiple range cells. Cramer-Rao low bound of angle estimation is deduced in theory. Simulation results demonstrate maximum likelihood method which performs better than both dominant scatter estimate method and weighted estimate method.
Citation
Haibo Wang Wenhua Huang Yue Jiang Tao Ba , "Maximum Likelihood Method and Cramer-Rao Low Bound of Angle Estimation for Wide-Band Monopulse Radar," Progress In Electromagnetics Research C, Vol. 85, 209-219, 2018.
doi:10.2528/PIERC18042510
http://www.jpier.org/PIERC/pier.php?paper=18042510
References

1. Mosca, E., "Angle estimation in amplitude comparison monopulse systems," IEEE Transactions on Aerospace and Electronic Systems, Vol. 5, No. 4, 205-212, 1969.
doi:10.1109/TAES.1969.309906

2. Hofstetter, E. M. and D. Delong, "Detection and parameter estimation in an amplitude-comparison monopulse radar," IEEE Transactions on Information Theory, Vol. 15, No. 1, 22-30, 1969.
doi:10.1109/TIT.1969.1054268

3. Nickel, U., "Overview of generalized monopulse estimation," IEEE Aerospace and Electronic Systems Magazine, Vol. 21, No. 6, 27-56, 2006.
doi:10.1109/MAES.2006.1662039

4. Blair, W. D. and M. Brandt-Pearce, "Statistical description of monopulse parameters for tracking rayleigh targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 2, 597-611, 1997.
doi:10.1109/7.670340

5. Blair, W. D. and M. Brandt-Pearce, "Monopulse doa estimation of two unresolved rayleigh targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 2, 452-469, 2002.
doi:10.1109/7.937461

6. Berkowitz, R. and S. Sherman, "Information derivable from monopulse radar measurements of two unresolved targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 5, 1011-1019, 2007.
doi:10.1109/TAES.1971.310348

7. Sinha, A., T. Kirubarajan, and Y. Bar-Shalom, "Maximum likelihood angle extractor for two closely spaced targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 1, 183-203, 2002.
doi:10.1109/7.993239

8. Wang, Z., A. Sinha, P. Willett, and Y. Bar-Shalom, "Angle estimation for two unresolved targets with monopulse radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 3, 998-1019, 2004.
doi:10.1109/TAES.2004.1337470

9. Howard, D. D., "High range-resolution monopulse tracking radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 11, No. 5, 749-755, 1975.
doi:10.1109/TAES.1975.307984

10. Zhang, Y. X., Q. F. Liu, R. J. Hong, P. P. Pan, and Z. M. Deng, "A novel monopulse angle estimation method for wideband lfm radars," Sensors, Vol. 16, No. 6, 817-825, 2016.
doi:10.3390/s16060817

11. Chen, X. L., "An angle measurement method for high resolution radar based on maximum likelihood estimation," Signal Processing, Vol. 16, No. 6, 817-625, 2012 (in Chinese).

12. Blyakhman, A., D. Clunie, R. Harris, and G. Mesyats, "Nanosecond gigawatt radar: Indication of small targets moving among heavy clutters," Radar Conference, 61-64, 2007.

13. Asvestas, J. S., "The physical-optics integral and computer graphics," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1459-1460, 1995.
doi:10.1109/8.475937

14. Uiku, H. K. and A. A. Ergin, "Radon transform interpretation of the physical optics integral and application to near and far field acoustic scattering problems," IEEE Antennas and Propagation Society International Symposium, 1-4, 2010.

15. Kay, Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, PTR Prentice Hall, 1993.