1. Finn, H. M. and R. S. Johnson, "Adaptive detection model with threshold control as a function of spatially sampled clutter-level estimates," RCA Review, Vol. 29, 414-464, 1968. Google Scholar
2. Nitzberg, R., "Low-loss almost constant false-alarm rate processors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 15, 719-723, 1979.
doi:10.1109/TAES.1979.308861 Google Scholar
3. Gregers Hanson, V. and J. H. Sawyers, "Detectability loss due to greatest of selection in a cell-averaging CFAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, 115-118, 1980.
doi:10.1109/TAES.1980.308885 Google Scholar
4. Weiss, M., "Analysis of some modified cell-averaging CFAR processers in multiple-target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 18, 102-114, 1982.
doi:10.1109/TAES.1982.309210 Google Scholar
5. Gandhi, P. P. and S. A. Kassam, "Analysis of CFAR processors in nonhomogeneous background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, 427-445, 1988.
doi:10.1109/7.7185 Google Scholar
6. Minkler, G. and J. Minkler, CFAR: The Principles of Automatic Radar Detection in Clutter, Magellan, Baltimore, 1990.
7. Qin, X., S. Zhou, H. Zou, and G. Gao, "A CFAR detection algorithm for generalized Gamma distributed background in high-resolution SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 10, 806-810, 2013.
doi:10.1109/LGRS.2012.2224317 Google Scholar
8. Zhang, R., W. Sheng, and X. Ma, "Improved switching CFAR detector for non-homogeneous environments," Signal Processing, Vol. 93, 35-48, 2013.
doi:10.1016/j.sigpro.2012.06.015 Google Scholar
9. Weinberg, G. V., "Management of interference in Pareto CFAR processes using adaptive test cell analysis," Signal Processing, Vol. 104, 264-273, 2014.
doi:10.1016/j.sigpro.2014.04.025 Google Scholar
10. Zaimbashi, A., "An adaptive cell averaging-based CFAR detector for interfering targets and clutter-edge situations," Digital Signal Processing, Vol. 31, 59-68, 2014.
doi:10.1016/j.dsp.2014.04.005 Google Scholar
11. Baadeche, M. and F. Soltani, "Performance analysis of ordered CFAR detectors for MIMO radars," Digital Signal Processing, Vol. 44, 47-57, 2015.
doi:10.1016/j.dsp.2015.05.010 Google Scholar
12. Dai, H., L. Du, Y. Wang, and Z. Wang, "A modified CFAR algorithm based on object proposals for ship target detection in SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 13, 1925-1929, 2016.
doi:10.1109/LGRS.2016.2618604 Google Scholar
13. Kong, L., B. Wang, G. Cui, and X. Yang, "Performance prediction of OS-CFAR for generalized Swerling-Chi fluctuating targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, 492-500, 2016.
doi:10.1109/TAES.2015.140967 Google Scholar
14. Tao, D., A. P. Doulgeris, and C. Brekke, "A segmentation-based CFAR detection algorithm using truncated statistics," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, 2887-2898, 2016.
doi:10.1109/TGRS.2015.2506822 Google Scholar
15. Yu, W., Y. Wang, H. Liu, and J. He, "Superpixel-based CFAR target detection for high-resolution SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 13, 730-734, 2016.
doi:10.1109/LGRS.2016.2540809 Google Scholar
16. Bakry, E. M., "Heterogeneous performance analysis of the new model of CFAR detectors for partially-correlated χ2-targets," Journal of Systems Engineering and Electronics, Vol. 29, 1-17, 2018. Google Scholar
17. Zhao, W., J. Li, X. Yang, Q. Peng, and J. Wang, "Innovative CFAR detector with effective parameter estimation method for generalised Gamma distribution and iterative sliding window strategy," IET Image Processing, Vol. 12, 60-69, 2018.
doi:10.1049/iet-ipr.2017.0225 Google Scholar
18. Ai, J., X. Yang, J. Song, Z. Dong, L. Jia, and F. Zhou, "An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery," IEEE Journal of Oceanic Engineering, Vol. 43, 267-279, 2018.
doi:10.1109/JOE.2017.2768198 Google Scholar
19. Lu, S., W. Yi, W. Liu, G. Cui, L. Kong, and X. Yang, "Data-dependent clustering-CFAR detector in heterogeneous environment," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, 476-485, 2018.
doi:10.1109/TAES.2017.2740065 Google Scholar
20. Balleri, A., A. Nehorai, and J. Wang, "Maximum likelihood estimation for compound-gaussian clutter with inverse-Gamma texture," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, 775-779, 2007.
doi:10.1109/TAES.2007.4285370 Google Scholar
21. Farshchian, M. and F. L. Posner, "The Pareto distribution for low grazing angle and high resolution X-band sea clutter," X-band sea clutter, 789-793, 2010. Google Scholar
22. Weinberg, G. V., "Assessing Pareto fit to high resolution high grazing angle sea clutter," IET Electronics Letters, Vol. 47, 516-517, 2011.
doi:10.1049/el.2011.0518 Google Scholar
23. Weinberg, G. V., "Constant false alarm rate detectors for Pareto clutter models," IET Radar, Sonar and Navigation, Vol. 7, 153-163, 2013.
doi:10.1049/iet-rsn.2011.0374 Google Scholar
24. Weinberg, G. V., Radar Detection Theory of Sliding Window Processes, CRC Press, Florida, 2017.
doi:10.1201/9781315154015
25. Weinberg, G. V., "Trimmed geometric mean order statistic CFAR detector for Pareto distributed clutter Signal," Image and Video Processing, 2018 (in press). Google Scholar
26. Levanon, N. and M. Shor, "Order statistics CFAR for Weibull background," IEE Proceedings F --- Radar and Signal Processing, Vol. 137, 157-162, 1990.
doi:10.1049/ip-f-2.1990.0023 Google Scholar
27. Weinberg, G. V., "Examination of classical detection schemes for targets in Pareto distributed clutter: Do classical CFAR detectors exist, as in the Gaussian case?," Multidimensional Systems and Signal Processing, Vol. 26, 599-617, 2015.
doi:10.1007/s11045-013-0275-y Google Scholar
28. Weinberg, G. V. and A. Alexopoulos, "Analysis of a dual order statistic constant false alarm rate detector," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, 2567-2574, 2016.
doi:10.1109/TAES.2016.150508 Google Scholar
29. Weinberg, G. V., "Assessing detector performance, with application to Pareto coherent multilook radar detection," IET Radar, Sonar and Navigation, Vol. 7, 401-412, 2013.
doi:10.1049/iet-rsn.2012.0127 Google Scholar