Vol. 76
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-20
Inverse Source of Circumference Geometries: SVD Investigation Based on Fourier Analysis
By
Progress In Electromagnetics Research M, Vol. 76, 217-230, 2018
Abstract
The role of the source geometry is investigated within the realm of inverse source problems. In order to examine the properties of the far zone radiation operator of some 2D curved sources its Singular Value Decomposition (SVD) is studied, either analytically, when possible, or numerically. This allows to evaluate the number of independent pieces of information, i.e. the number of degrees of freedom (NDF), of the source and to point out the set of far zone fields corresponding to stable solutions of the inverse problem. In particular, upper bounds for the NDF are obtained by exploiting Fourier series representations of the singular functions. Both curved (i.e. circumference and arc of circumference) and rectilinear geometries are considered, pointing out the role of limited angular observation domains. Moreover, in order to obtain some clues about the resolution achievable in the inverse source problem, a point-spread function analysis is performed. The latter reveals a spatially variant resolution for limited angular observation domains. The practical relevance ofthese results is highlighted with numerical examples of array diagnostics.
Citation
Giovanni Leone Maria Antonia Maisto Rocco Pierri , "Inverse Source of Circumference Geometries: SVD Investigation Based on Fourier Analysis," Progress In Electromagnetics Research M, Vol. 76, 217-230, 2018.
doi:10.2528/PIERM18062102
http://www.jpier.org/PIERM/pier.php?paper=18062102
References

1. Leone, G., "Source geometry optimization for hemispherical radiation pattern coverage," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2033-2038, May 2016.
doi:10.1109/TAP.2016.2536165

2. Li, W. T., X. W. Shi, Y. Q. Hei, S. F. Liu, and J. Zhu, "A hybrid optimization algorithm and its application for conformal array pattern synthesis," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3401-3406, 2010.
doi:10.1109/TAP.2010.2050425

3. Persson, K., M. Gustafsson, G. Kristensson, and B. Widenberg, "Source reconstruction by far-field data for imaging of defects in frequency selective radomes," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 480-483, 2013.
doi:10.1109/LAWP.2013.2256100

4. Di Francia, G. T., "Degrees of freedom of an image," Journal of the Optical Society of America, Vol. 59, 799-804, 1969.
doi:10.1364/JOSA.59.000799

5. Newsam, G. and R. Barakat, "Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics," Journal of the Optical Society of America, Vol. 2, 2040-2045, 1985.
doi:10.1364/JOSAA.2.002040

6. Riesz, F. and B. Nagy, Functional Analysis, Dover, 1990.

7. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP Publishing, 1998.
doi:10.1887/0750304359

8. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse source in the presence of a reflecting plane for the strip case," Journal of the Optical Society of America A, Vol. 31, No. 12, 2814-2820, 2014.
doi:10.1364/JOSAA.31.002814

9. Solimene, R., M. A. Maisto, and R. Pierri, "Role of diversity on the singular values of linear scattering operators: The case of strip objects," Journal of the Optical Society of America A, Vol. 30, No. 11, 2266-2272, 2013.
doi:10.1364/JOSAA.30.002266

10. Solimene, R., M. A. Maisto, G. Romeo, and R. Pierri, "On the singular spectrum of the radiation operator for multiple and extended observation domains," International Journal of Antennas and Propagation, http://dx.doi.org/10.1155/2013/585238, 2013.

11. Solimene, R., M. A. Maisto, and R. Pierri, "Inverse scattering in the presence of a reflecting plane," Journal of Optics, Vol. 18, No. 2, 025603, 2015.
doi:10.1088/2040-8978/18/2/025603

12. Leone, G., M. A. Maisto, and R. Pierri, "Application of inverse source reconstruction to conformal antennas synthesis," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1436-1445, Mar. 2018.
doi:10.1109/TAP.2018.2794397

13. Solimene, R. and R. Pierri, "Number of degrees of freedom of the radiated field over multiple bounded domain," Optics Letters, Vol. 32, No. 21, 3113-3115, 2007.
doi:10.1364/OL.32.003113

14. Slepian, D. and H. O. Pollack, "Prolate spheroidal wave functions, Fourier analysis, and uncertainty - I," Bell Syst. Techn. J., Vol. 40, 43-63, 1961.
doi:10.1002/j.1538-7305.1961.tb03976.x

15. Landau, H. J. and H. O. Pollack, "The eigenvalue distribution of time and frequency limiting," J. Math. Phys., Vol. 77, 469-481, 1980.

16. Leone, G., M. A. Maisto, and R. Pierri, "Inverse source reconstruction for the synthesis on conformal domains," 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, Sep. 2017.

17. Leone, G., M. A. Maisto, and R. Pierri, "First step towards a comparison between 3D source geometries for conformal antennas," 12th European Conference on Antennas and Propagation (EUCAP 2018), London, UK, Apr. 2018.