1. AC 20-158A "The certification of aircraft electrical and electronic systems for operation in the high-intensity radiated fields (HIRF) environment,", AIR-130, Aviation Safety --- Aircraft Certification Service, Aircraft Engineering Division, May 2014. Google Scholar
2. EUROCAE ED-107 "Guide to certification of aircraft in a high-intensity radiated field (HIRF) environment,", rev A, July 2010/SAE ARP 5583, rev A, June 2010. Google Scholar
3. Gil, E. P. and G. G. Gutierrez, "Simplification and cleaning of complex CAD models for EMC simulations," International Symp. on Electromagnetic Compatibility EMC Europe, York, UK, 2011.
doi:10.2528/PIERC18011020 Google Scholar
4. Nogueira de Sao Jose, A., A. Colin, J. Fujioka Mologni, G. Maciulis Dip, U. do Carmo Resende, and S. TrindadeMordente Goncalves, "Computational savings based on three-dimensional automotive geometries’ simplifications in electromagnetics simulations," International Conference on Microwave and Optoelectronics, Rio de Janeiro, 2013. Google Scholar
5. Gutierrez, G. G., S. F. Romero, M. Gonzaga, E. Pascual-Gil, L. D. Angulo, M. R. Cabello, and S. G. Garcia, "Influence of geometric simplifications on lightning strike simulations," Progress In Electromagnetics Research C, Vol. 83, 15-32, 2018.
doi:10.1109/TEMC.2013.2291680 Google Scholar
6. Junqua, I., J.-P. Parmantier, and M. Ridel, "Modeling of high frequency coupling inside oversized structures by asymptotic and PWB methods," Proc. Int. Conf. Electromagn. Adv. Appl. ICEAA, 2011. Google Scholar
7. Gutierrez, G. G., J. Alvarez, E. Pascual-Gil, M. Bandinelli, R. Guidi, V. Martorelli, M. F. Pantoja, M. R. Cabello, and S. G. Garcia, "HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method ," IEEE Trans. on Electromagnetic Compatibility, Vol. 56, No. 4, 854-863, 2014.
doi:10.1109/TEMC.1981.303899 Google Scholar
8. A400M, http://militaryaircraft-airbusds.com/aircraft/a400m/a400mabout.aspx. Google Scholar
9. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Trans. on Electromagnetic Compatibility, Vol. 23, No. 2, 88-97, 1981. Google Scholar
10. RTCA/DO-160 "Environmental conditions and test procedures for airborne equipment,", issue G, December 2010/EUROCAE ED-14, issue G, May 2011. Google Scholar
11. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.
12. RTCA/DO-307 "Aircraft design and certification for portable electronic device (PED) tolerance,", issue A, December 2016. Google Scholar
13. "CATIA by dassault systemes,", http://www.3ds.com. Google Scholar
14. CADfix, http://www.transcendata.com/products/cadfix/.
doi:10.1109/TAP.1966.1138693 Google Scholar
15. Garcia, S. G., J. Alvarez, L. D. Angulo, and M. R. Cabello, "UGRFDTD EM solver,", http://www.-sembahome.org/, 2011.
doi:10.1109/15.865332 Google Scholar
16. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966. Google Scholar
17. Berenger, J.-P., "A multiwire formalism for the FDTD method," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 3, 257-264, 2000. Google Scholar
18. HIRF-SE project (2008), http://hirfse.axessim.eu/. Google Scholar
19. "Alhambra-UGRFDTD by CSIRC (2013),", https://alhambra.ugr.es/.
doi:10.1109/TEMC.2016.2514379 Google Scholar
20. Romero, S. F., G. G. Gutierrez, A. L. Morales, and M. A. Cancela, "Validation procedure of low level coupling tests on real aircraft structure," International Symposium on Electromagnetic Compatibility EMC Europe, 2012.
doi:10.2528/PIERL12030206 Google Scholar
21. Gutierrez, G. G., D. M. Romero, M. R. Cabello, E. Pascual-Gil, L. D. Angulo, and S. G. Garcia, "On the Design Of Aircraft Electrical Structure Networks," IEEE Trans. on Electromagnetic Compatibility, Vol. 2, No. 58, 401-408, 2016.
doi:10.1109/TEMC.2017.2648507 Google Scholar
22. Gutierrez, G. G., S. F. Romero, J. Alvarez, S. G. Garcia, and E. P. Gil, "On the use of FDTD for HIRF validation and certification," Progress In Electromagnetics Research Letters, Vol. 32, 145-156, 2012.
doi:10.1109/15.809798 Google Scholar
23. Cabello, M. R., S. Fernandez, M. Pous, E. Pascual-Gil, L. D. Angulo, P. Lopez, P. J. Riu, G. G. Gutierrez, D. Mateos, D. Poyatos, M. Fernandez, J. Alvarez, M. F. Pantoja, M. A. Cancela, F. Silva, A. R. Bretones, R. Trallero, L. N. Fernandez, D. Escot, R. G. Martin, and S. G. Garcia, "SIVA UAV: A case study for the EMC analysis of composite air vehicles," IEEE Trans. on Electromagnetic Compatibility, Vol. 59, No. 4, 1103-1113, 2017.
doi:10.1109/TMTT.2016.2637348 Google Scholar
24. Sarto, M., "A new model for the FDTD analysis of the shielding performances of thin composite structures," IEEE Trans. on Electromagnetic Compatibility, Vol. 41, No. 4, 298-306, 1999.
doi:10.1109/TMTT.2004.832019 Google Scholar
25. Cabello, M. R., L. D. Angulo, J. Alvarez, I. Flintoft, S. Bourke, J. Dawson, R. G. Martin, and S. G. Garcia, "A hybrid crank-nicolson FDTD subgridding boundary condition for lossy thin-layer modeling," IEEE Trans. on Microwave Theory and Techniques, Vol. 65, No. 5, 1397-1406, 2017.
doi:10.1002/9780470495056 Google Scholar
26. Schmidt, S. and G. Lazzi, "Use of the FDTD thin-strut formalism for biomedical telemetry coil designs," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, No. 8, 1952-1956, 2004. Google Scholar
27. Hill, D., Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, IEEE Press, New York, 2009.