Vol. 86
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-09-05
Influence of Geometric Simplifications on High-Intensity Radiated Field Simulations
By
Progress In Electromagnetics Research C, Vol. 86, 217-232, 2018
Abstract
This paper analyzes the influence of simplifications in electromagnetic models used in the design of protections against High-Intensity Radiated Field (HIRF) threats. Both conductive and radiated effects are evaluated, covering the wide frequency range between 1 MHz and 6 GHz. A real and complex test case such as the power plant of an A400M aircraft was simulated using FDTD method so as to analyse the impact of different simplification approaches. The parameters studied are the inclusion/removal of installations, modification of electrical contacts, material properties, and changes in the cable features. In consequence, we can conclude that for the frequency range around tens or hundreds of megahertzs every detail is important (all the pieces of the model, accurate bundle routes and cable properties), while for higher frequencies only the details nearby the analyzed point are relevant for the results and it is not necessary to distinguish between different materials which are good conductors at this frequency range.
Citation
Guadalupe Gutierrez Gutierrez, Sergio Fernandez Romero, Monica Gonzaga, Enrique Pascual-Gil, Luis Diaz Angulo, Miguel David Ruiz Cabello N., and Salvador Gonzalez Garcia, "Influence of Geometric Simplifications on High-Intensity Radiated Field Simulations," Progress In Electromagnetics Research C, Vol. 86, 217-232, 2018.
doi:10.2528/PIERC18062705
References

1. AC 20-158A "The certification of aircraft electrical and electronic systems for operation in the high-intensity radiated fields (HIRF) environment,", AIR-130, Aviation Safety --- Aircraft Certification Service, Aircraft Engineering Division, May 2014.        Google Scholar

2. EUROCAE ED-107 "Guide to certification of aircraft in a high-intensity radiated field (HIRF) environment,", rev A, July 2010/SAE ARP 5583, rev A, June 2010.        Google Scholar

3. Gil, E. P. and G. G. Gutierrez, "Simplification and cleaning of complex CAD models for EMC simulations," International Symp. on Electromagnetic Compatibility EMC Europe, York, UK, 2011.
doi:10.2528/PIERC18011020        Google Scholar

4. Nogueira de Sao Jose, A., A. Colin, J. Fujioka Mologni, G. Maciulis Dip, U. do Carmo Resende, and S. TrindadeMordente Goncalves, "Computational savings based on three-dimensional automotive geometries’ simplifications in electromagnetics simulations," International Conference on Microwave and Optoelectronics, Rio de Janeiro, 2013.        Google Scholar

5. Gutierrez, G. G., S. F. Romero, M. Gonzaga, E. Pascual-Gil, L. D. Angulo, M. R. Cabello, and S. G. Garcia, "Influence of geometric simplifications on lightning strike simulations," Progress In Electromagnetics Research C, Vol. 83, 15-32, 2018.
doi:10.1109/TEMC.2013.2291680        Google Scholar

6. Junqua, I., J.-P. Parmantier, and M. Ridel, "Modeling of high frequency coupling inside oversized structures by asymptotic and PWB methods," Proc. Int. Conf. Electromagn. Adv. Appl. ICEAA, 2011.        Google Scholar

7. Gutierrez, G. G., J. Alvarez, E. Pascual-Gil, M. Bandinelli, R. Guidi, V. Martorelli, M. F. Pantoja, M. R. Cabello, and S. G. Garcia, "HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method ," IEEE Trans. on Electromagnetic Compatibility, Vol. 56, No. 4, 854-863, 2014.
doi:10.1109/TEMC.1981.303899        Google Scholar

8. A400M, http://militaryaircraft-airbusds.com/aircraft/a400m/a400mabout.aspx.        Google Scholar

9. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Trans. on Electromagnetic Compatibility, Vol. 23, No. 2, 88-97, 1981.        Google Scholar

10. RTCA/DO-160 "Environmental conditions and test procedures for airborne equipment,", issue G, December 2010/EUROCAE ED-14, issue G, May 2011.        Google Scholar

11. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.

12. RTCA/DO-307 "Aircraft design and certification for portable electronic device (PED) tolerance,", issue A, December 2016.        Google Scholar

13. "CATIA by dassault systemes,", http://www.3ds.com.        Google Scholar

14. CADfix, http://www.transcendata.com/products/cadfix/.
doi:10.1109/TAP.1966.1138693        Google Scholar

15. Garcia, S. G., J. Alvarez, L. D. Angulo, and M. R. Cabello, "UGRFDTD EM solver,", http://www.-sembahome.org/, 2011.
doi:10.1109/15.865332        Google Scholar

16. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.        Google Scholar

17. Berenger, J.-P., "A multiwire formalism for the FDTD method," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 3, 257-264, 2000.        Google Scholar

18. HIRF-SE project (2008), http://hirfse.axessim.eu/.        Google Scholar

19. "Alhambra-UGRFDTD by CSIRC (2013),", https://alhambra.ugr.es/.
doi:10.1109/TEMC.2016.2514379        Google Scholar

20. Romero, S. F., G. G. Gutierrez, A. L. Morales, and M. A. Cancela, "Validation procedure of low level coupling tests on real aircraft structure," International Symposium on Electromagnetic Compatibility EMC Europe, 2012.
doi:10.2528/PIERL12030206        Google Scholar

21. Gutierrez, G. G., D. M. Romero, M. R. Cabello, E. Pascual-Gil, L. D. Angulo, and S. G. Garcia, "On the Design Of Aircraft Electrical Structure Networks," IEEE Trans. on Electromagnetic Compatibility, Vol. 2, No. 58, 401-408, 2016.
doi:10.1109/TEMC.2017.2648507        Google Scholar

22. Gutierrez, G. G., S. F. Romero, J. Alvarez, S. G. Garcia, and E. P. Gil, "On the use of FDTD for HIRF validation and certification," Progress In Electromagnetics Research Letters, Vol. 32, 145-156, 2012.
doi:10.1109/15.809798        Google Scholar

23. Cabello, M. R., S. Fernandez, M. Pous, E. Pascual-Gil, L. D. Angulo, P. Lopez, P. J. Riu, G. G. Gutierrez, D. Mateos, D. Poyatos, M. Fernandez, J. Alvarez, M. F. Pantoja, M. A. Cancela, F. Silva, A. R. Bretones, R. Trallero, L. N. Fernandez, D. Escot, R. G. Martin, and S. G. Garcia, "SIVA UAV: A case study for the EMC analysis of composite air vehicles," IEEE Trans. on Electromagnetic Compatibility, Vol. 59, No. 4, 1103-1113, 2017.
doi:10.1109/TMTT.2016.2637348        Google Scholar

24. Sarto, M., "A new model for the FDTD analysis of the shielding performances of thin composite structures," IEEE Trans. on Electromagnetic Compatibility, Vol. 41, No. 4, 298-306, 1999.
doi:10.1109/TMTT.2004.832019        Google Scholar

25. Cabello, M. R., L. D. Angulo, J. Alvarez, I. Flintoft, S. Bourke, J. Dawson, R. G. Martin, and S. G. Garcia, "A hybrid crank-nicolson FDTD subgridding boundary condition for lossy thin-layer modeling," IEEE Trans. on Microwave Theory and Techniques, Vol. 65, No. 5, 1397-1406, 2017.
doi:10.1002/9780470495056        Google Scholar

26. Schmidt, S. and G. Lazzi, "Use of the FDTD thin-strut formalism for biomedical telemetry coil designs," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, No. 8, 1952-1956, 2004.        Google Scholar

27. Hill, D., Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, IEEE Press, New York, 2009.