1. Chen, Z., Y. Fu, Y. Xiang, and R. Rong, "A novel iterative shrinkage algorithm for CS-MRI via adaptive regularization," IEEE Signal Processing Letters, Vol. 99, 1-1, 2017.
doi:10.1109/LSP.2017.2647810 Google Scholar
2. Yazdanpanah, A. P. and E. E. Regentova, "Compressed sensing MRI using curvelet sparsity and nonlocal total variation: CS-NLTV," Electronic Imaging, Vol. 2017, No. 13, 5-9, 2017.
doi:10.2352/ISSN.2470-1173.2017.13.IPAS-197 Google Scholar
3. Candes, E. J., "Compressive sampling," IEEE Proceedings of the International Congress of Mathematicians, 2006. Google Scholar
4. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731 Google Scholar
5. Li, S., H. Yin, and L. Fang, "Remote sensing image fusion via sparse representations over learned dictionaries," IEEE Transactions on Geoscience & Remote Sensing, Vol. 51, No. 9, 4779-4789, 2013.
doi:10.1109/TGRS.2012.2230332 Google Scholar
6. Zhang, J., D. Zhao, F. Jiang, and W. Gao, "Structural group sparse representation for image compressive sensing recovery," Data Compression Conference, Vol. 6, No. 3, 331-340, 2013. Google Scholar
7. Josa, M., D. Bioucas, and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, 2007.
doi:10.1109/TIP.2007.909319 Google Scholar
8. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," Siam Journal on Imaging Sciences, Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542 Google Scholar
9. Ghadimi, E., A. Teixeira, and I. Shames, "Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems," IEEE Transactions on Automatic Control, Vol. 60, No. 3, 644-658, 2015.
doi:10.1109/TAC.2014.2354892 Google Scholar
10. Ramdas, A. and R. J. Tibshirani, "Fast and flexible ADMM algorithms for trend filtering," Journal of Computational and Graphical Statistics, Vol. 25, No. 3, 839-858, 2014.
doi:10.1080/10618600.2015.1054033 Google Scholar
11. Wright, S. J., R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation," IEEE International Conference on Acoustics, Speech and Signal Processing, 2479-2493, 2008. Google Scholar
12. Ye, X., W. Zhu, A. Zhang, and Q. Meng, "Sparse channel estimation in MIMO-OFDM systems based on an improved sparse reconstruction by separable approximation algorithm," Journal of Information & Computational Science, Vol. 10, No. 2, 609-619, 2013. Google Scholar
13. Figueiredo, M. A. T., R. D. Nowak, and S. J.Wright, "Gradient projection for sparse reconstruction: Application To Compressed Sensing And Other Inverse problems," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 586-597, 2008.
doi:10.1109/JSTSP.2007.910281 Google Scholar
14. Zibulevsky, M. and M. Elad, "L1-L2 optimization in signal and image processing," IEEE Signal Processing Magazine, Vol. 27, No. 3, 76-88, 2010.
doi:10.1109/MSP.2010.936023 Google Scholar
15. Pant, J. K., W. S. Lu, and A. Antoniou, "New improved algorithms for compressive sensing based on Lp NORM," IEEE Transactions on Circuits & Systems II Express Briefs, Vol. 61, No. 3, 198-202, 2014.
doi:10.1109/TCSII.2013.2296133 Google Scholar
16. Ye, X., W. P. Zhu, A. Zhang, and J. Yan, "Sparse channel estimation of MIMO-OFDM systems with unconstrained smoothed L0 -norm-regularized least squares compressed sensing," Eurasip Journal on Wireless Communications & Networking, Vol. 2013, No. 1, 282, 2013.
doi:10.1186/1687-1499-2013-282 Google Scholar
17. Zhang, Y., B. S. Peterson, G. Ji, and Z. Dong, "Energy preserved sampling for compressed sensing MRI," Computational and Mathematical Methods in Medicine, Vol. 2014, No. 5, 546814, 2014. Google Scholar
18. Zhang, Y., S. Wang, G. Ji, and Z. Dong, "Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging," Information Sciences, Vol. 10, No. 1, 116-117, 2015. Google Scholar
19. Mohimani, H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed L0 norm," IEEE Transactions on Signal Processing, Vol. 57, No. 1, 289-301, 2009.
doi:10.1109/TSP.2008.2007606 Google Scholar
20. Zhao, R., W. Lin, H. Li, and S. Hu, "Reconstruction algorithm for compressive sensing based on smoothed L0 norm and revised newton method," Journal of Computer-Aided Design & Computer Graphics, Vol. 24, No. 4, 478-484, 2012. Google Scholar
21. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by re-weighted L1 minimization," Journal of Fourier Analysis and Applications, Vol. 14, No. 5, 877-905, 2008.
doi:10.1007/s00041-008-9045-x Google Scholar
22. Pant, J. K., W. S. Lu, and A. Antoniou, "Reconstruction of sparse signals by minimizing a re-weighted approximate L0-norm in the null space of the measurement matrix," IEEE International Midwest Symposium on Circuits and Systems, 430-433, 2010. Google Scholar
23. Zibetti, M. V. W., C. Lin, and G. T. Herman, "Total variation superiorized conjugate gradient method for image reconstruction," Inverse Problems, Vol. 34, No. 3, 2017. Google Scholar
24. Wen, F., Y. Yang, P. Liu, R. Ying, and Y. Liu, "Efficient lq minimization algorithms for compressive sensing based on proximity operator," Mathematics, 2016. Google Scholar
25. Ye, X. and W. P. Zhu, "Sparse channel estimation of pulse-shaping multiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient L2SL0 reconstruction algorithm," Iet Communications, Vol. 8, No. 7, 1124-1131, 2014.
doi:10.1049/iet-com.2013.0571 Google Scholar