1. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Permanent magnet couplings: Field and torque three-dimensional expressions based on the Coulombian model," IEEE Trans. on Magn., Vol. 45, No. 4, 1950-1958, Apr. 2009.
doi:10.1109/TMAG.2008.2010623 Google Scholar
2. Cuguat, O., J. Delamare, and G. Reyne, "Magnetic micro-actuators and systems (magmas)," IEEE Trans. Magn., Vol. 39, No. 5, 3607-3612, Sep. 2003.
doi:10.1109/TMAG.2003.816763 Google Scholar
3. Wang, J., G. W. Jewell, and D. Howe, "Design optimisation and comparison of permanent magnet machines topologies," Proc. Inst. Elect. Eng., Vol. 148, 456-464, 2001. Google Scholar
4. Charpentier, J. F. and G. Lemarquand, "Optimization of unconventional p.m. couplings," IEEE Trans. Magn., Vol. 38, No. 2, 1093-1096, Mar. 2002.
doi:10.1109/20.996280 Google Scholar
5. Lemarquand, V., J. F. Charpentier, and G. Lemarquand, "Nonsinusoidal torque of permanent-magnet couplings," IEEE Trans. Magn., Vol. 35, No. 5, 4200-4205, Sep. 1999.
doi:10.1109/20.799068 Google Scholar
6. Berkouk, M., V. Lemarquand, and G. Lemarquand, "Analytical calculation of ironless loudspeaker motors," IEEE Trans. Magn., Vol. 37, No. 2, 1011-1014, Mar. 2001.
doi:10.1109/20.917185 Google Scholar
7. Kwon, O. M., C. Surussavadee, M. Chari, S. Salon, and K. Vasubramaniam, "Analysis of the far field of permanent magnet motors and effects of geometric asymmetries and unbalance in magnet design," IEEE Trans. Magn., Vol. 40, No. 3, 435-442, May 2004.
doi:10.1109/TMAG.2004.824117 Google Scholar
8. Paperno, E., I. Sasada, and E. Leonovich, "A new method for magnetic position and orientation tracking," IEEE Trans. Magn., Vol. 37, No. 4, 1938-1940, Jul. 2001.
doi:10.1109/20.951014 Google Scholar
9. Fountain, T. W. R., P. V. Kailat, and J. J. Abbott, "Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator," Proc. IEEE Int. Conf. Robot. Autom., 576-581, 2010. Google Scholar
10. Wu, S.-T., J.-Y. Chen, and S.-H. Wu, "A rotary encoder with an eccentrically mounted ring magnet," IEEE Trans. Instrum. Meas., Vol. 63, No. 8, 1907-1915, Aug. 2014.
doi:10.1109/TIM.2014.2302243 Google Scholar
11. Ng, K., Z. Q. Zhu, and D. Howe, "Open-circuit field distribution in a brushless motor with diametrically magnetised PM rotor, accounting for slotting and eddy current effects," IEEE Trans. on Magn., Vol. 32, No. 5, 5070-5072, 1996.
doi:10.1109/20.539493 Google Scholar
12. Eid, G. and A. Mouillet, "Transistorized dc brushless micromotor with rare-earth permanent magnets," Proc. Int. Conf. on Electr. Mach., 570-573, 1984. Google Scholar
13. Jang, S. M., M. M. Koo, Y. S. Park, J. Y. Choi, and S. H. Lee, "Characteristic analysis on permanent magnet synchronous machines with three types of diametrically magnetized rotors under magnetic circuit construction conditions," Proc. IEEE Vehi. Power and Prop. Conf., 227-230, 2012. Google Scholar
14. Jang, S. M., J. Y. Choi, D. J. You, and H. S. Yang, "Electromagnetic analysis of high speed machines with diametrically magnetized rotor considering slotting effect and applied to new magnetization modelling," Proc. IEEE Int. Conf. on Electr. Mach. and Driv., 1204-1211, 2005.
doi:10.1109/IEMDC.2005.195875 Google Scholar
15. Lemarquand, G. and V. Lemarquand, "Annular magnet position sensor," IEEE Trans. on Magn., Vol. 26, No. 5, 2041-2043, 1990.
doi:10.1109/20.104612 Google Scholar
16. Smirnov, Y., T. Kozina, E. Yurasova, and A. Sokolov, "Analog-to-Digital converters of the components of a displacement with the use of microelectronic sine-cosine magnetic encoders," Measurement Techniques, Vol. 57, 41-46, 2014.
doi:10.1007/s11018-014-0404-5 Google Scholar
17. Lenzo, B., M. Fontana, S. Marcheschi, F. Salsedo, A. Frisoli, and M. Bergamasco, "Trackhold: A novel passive arm-support device," ASME J. Mechan. and Robo., Vol. 8, 1-9, 2015. Google Scholar
18. Wang, S., J. Jin, T. Li, and G. Liu, "High-accuracy magnetic rotary encoder," System Simulation and Scientific Computing, 74-82, 2012.
doi:10.1007/978-3-642-34381-0_9 Google Scholar
19. Nguyen, V. T., T.-F. Lu, and P. Grimshaw, "Human intention recognition based on contact-less sensors to control an elbow and forearm assistive exoskeleton," Proc. Int. Conf. Asi. Soc. for Prec. Engin. and Nano. (ASPEN 2017), Nov. 2017. Google Scholar
20. Schaller, V., U. Kraling, C. Rusu, K. Petersson, J. Wipenmyr, A. Krozer, G. Wahnstrom, A. Sanz-Velasco, P. Enoksson, and C. Johansson, "Motion of nanometer sized magnetic particles in a magnetic field gradient," J. Appl. Phys., Vol. 104, 093918, 2008.
doi:10.1063/1.3009686 Google Scholar
21. Warnke, K., "Finite-element modelling of the separation of magnetic microparticles in fluid," IEEE Trans. Magn., Vol. 39, No. 3, 1771-1777, May 2003.
doi:10.1109/TMAG.2003.810609 Google Scholar
22. Caciagli, A., R. J. Baars, A. P. Philipse, and B. W. M. Kuipers, "Exact expression for the magnetic field of a finite cylinder with arbitrary uniform magnetization," J. Mag. and Mag. Mater., Vol. 456, 423-432, Jun. 2018.
doi:10.1016/j.jmmm.2018.02.003 Google Scholar
23. Robertson, W., B. Cazzolato, and A. Zander, "A simplified force equation for coaxial cylindrical magnets and thin coils," IEEE Trans. on Magn., Vol. 47, No. 8, 2045-2049, 2011.
doi:10.1109/TMAG.2011.2129524 Google Scholar
24. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. on Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096 Google Scholar
25. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708 Google Scholar
26. Stratton, J., Electromagnetic Theory, McGraw-Hill Book Company, New York and London, 1941.
27. Oberteuffer, J., "Magnetic separation: A review of principles, devices, and applications," IEEE Trans. Magn., Vol. 10, No. 2, 223-238, 1974.
doi:10.1109/TMAG.1974.1058315 Google Scholar
28. Wysin, G., "Demagnetization fields,", available on https://www.phys.ksu.edu/personal/wysin/notes/demag.pdf. Google Scholar
29. Fontana, M., F. Salsedo, and M. Bergamasco, "Novel magnetic sensing approach with improved linearity," Sensors, No. 6, 7618-7632, 2013.
doi:10.3390/s130607618 Google Scholar
30. Furlani, E. P., Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications, Academic Press, 2001.
31. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using Coulombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Trans. on Magn., Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316 Google Scholar
32. Ravaud, R. and G. Lemarquand, "Comparison of the Coulombian and Amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009. Google Scholar
33. Babic, S. I. and C. Akyel, "Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings," Progress in Electromagnetics Research C, Vol. 5, 71-82, 2008. Google Scholar
34. Ravau, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Magnetic field produced by a tile permanent magnet whose polarization is both uniform and tangential," Progress In Electromagnetics Research B, Vol. 13, 1-20, 2009.
doi:10.2528/PIERB08121901 Google Scholar
35. Ravaud, R. and G. Lemarquand, "Analytical expression of the magnetic field created by tile permanent magnets tangentially magnetized and radial currents in massive disks," Progress In Electromagnetics Research B, Vol. 13, 309-328, 2009. Google Scholar
36. Fukushima, T., "Precise, compact, and fast computation of complete elliptic integrals by piecewise minimax rational function approximation ," J. Comp. Appl. Math., Vol. 282, 71-76, 2015.
doi:10.1016/j.cam.2014.12.038 Google Scholar
37. Fukushima, T., "Fast computation of incomplete elliptic integral of first kind by half argument transformation," Numer. Math., Vol. 116, 687-719, 2010.
doi:10.1007/s00211-010-0321-8 Google Scholar
38. Fukushima, T., "Precise and fast computation of a general incomplete elliptic integral of second kind by half and double argument transformations," J. Comp. Appl. Math., Vol. 235, 4140-4148, 2011.
doi:10.1016/j.cam.2011.03.004 Google Scholar
39. Fukushima, T., "Precise and fast computation of a general incomplete elliptic integral of third kind by half and double argument transformations," J. Comput. Appl. Math., Vol. 236, 1961-1975, 2012.
doi:10.1016/j.cam.2011.11.007 Google Scholar