Vol. 87
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-10-16
Dual-Band Reconfigurable Graphene-Based Patch Antenna in Terahertz Band: Design, Analysis and Modeling Using WCIP Method
By
Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018
Abstract
The resonant frequency of an antenna plays a crucial role in the design of a reconfigurable antenna. In this article, we have developed a dual-band reconfigurable terahertz patch antenna by using graphene. The simulation results demonstrate that the designed structure can provide excellent properties in terms of dual wide-band performance, frequency-recon guration by applying different voltages on the graphene. These initial results are particularly promising for various applications in the THz regime. Furthermore, we have investigated the effect of the additional parameter such as temperature and relaxation time. The modeling is done by using a new equation of the Wave Concept Iterative Process (WCIP) method, and the validation is achieved by comparison with CST simulator. Here, we propose to develop a new efficient and flexible numerical tool for graphene modeling.
Citation
AYMEN HLALI Zied Houaneb Hassen Zairi , "Dual-Band Reconfigurable Graphene-Based Patch Antenna in Terahertz Band: Design, Analysis and Modeling Using WCIP Method," Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018.
doi:10.2528/PIERC18080107
http://www.jpier.org/PIERC/pier.php?paper=18080107
References

1. Kyungho, H., T. K. Nguyen, I. Park, and H. Han, "Terahertz Yagi-Uda antenna for high input resistance," J. Infrared Millim. Terahertz Waves, Vol. 31, 441-451, 2010.

2. Kazemi, A. H. and A. Mokhtari, "Graphene-based patch antenna tunable in the three atmospheric windows," Inter. J. Light Electron Opt., Vol. 142, 475-482, 2017.
doi:10.1016/j.ijleo.2017.05.113

3. Ramezan, A. S. and B. Z. Ferdows, "Metamaterial Fabry-Perot cavity implementation for gain and bandwidth enhancement of THz dipole antenna," antenna,”Inter. J. Light Electron Opt., Vol. 127, 5181-5185, 2016.
doi:10.1016/j.ijleo.2016.02.072

4. Sirisha, M. and M. Arun, "Dual-band reconfigurable graphene-based patch antenna in terahertz band for wireless network-on-chip applications," IET Micr., A. & Prop., Vol. 11, 2104-2108, 2017.
doi:10.1049/iet-map.2017.0415

5. Mir, M. S. and A. S. Ramazan, "Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load," J. Opt. Quant. Elec., Vol. 221, 1-13, 2017.

6. Alexander, I. M., Y. Bin, M. G. Stephen, W. Michael, and S. D. Robert, "Terahertz spectroscopy: A powerful new tool for the chemical sciences?," Chem. Soc. Rev., Vol. 41, 2072-2082, 2012.
doi:10.1039/C1CS15277G

7. Nikita, V. Ch., et al., "Wide-aperture aspherical lens for high-resolut terahertz imaging," Rev. Sci. Instrum., Vol. 88, 1-6, 2017.

8. Dhillon, S. S., et al., "The 2017 terahertz science and technology roadmap," J. Phy. D: Appl. Phy., Vol. 50, No. 4, 1064-1076, 2017.

9. Novoselov, K. S., V. I. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature, Vol. 490, No. 7419, 192-200, 2012.
doi:10.1038/nature11458

10. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, No. 10, 666-669, 2004.
doi:10.1126/science.1102896

11. Antonio, P. and Ch. Gennaro, "Plasmon modes in graphene: Status and prospect," The Royal Society of Chemistry, Vol. 6, 10927-10940, 2014.

12. Tamagnone, M., J. S. Gymez-Dıaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Appl. Phys. Lett., Vol. 101, 214101-214104, 2012.

13. Leonardo, V., H. Jin, C. Dominique, P. Antonio, K. Wojciech, and S. V. Miriam, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 1-23, 2016.

14. Leonardo, V., et al., "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, 1-18, 2016.

15. Tang, W., A. Politano, C. Guo, W. Guo, C. Liu, L.Wang, X. Chen, and W. Lu, "Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Adv. Funct. Mater., 1-9, 2018.

16. Amit, A., S. V. Miriam, V. Leonardo, C. Anna, and P. Antonio, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, 1-11, 2018.

17. Jung, C. W., M. J. Lee, G. P. Li, and F. D. Flaviis, "Re-configurable scan-beam single-arm spiral antenna integrated with RFMEMS switches ," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 455-463, 2006.
doi:10.1109/TAP.2005.863407

18. Cetiner, B. A., G. R. Crusats, L. Jofre, and N. Biyikli, "RF MEMS integrated frequency reconfigurable annular slot antenna," Journal Title Abbreviation, Vol. 58, No. 3, 626-632, 2010.

19. Pringle, L. N., et al., "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1434-1445, 2004.
doi:10.1109/TAP.2004.825648

20. Aboufoul, T., A. Alomainy, and C. Parini, "Reconfiguring UWB monopole antenna for cognitive radio applications using GaAs FET switches," IEEE Antennas Wireless Propag. Lett., Vol. 11, 392-394, 2012.
doi:10.1109/LAWP.2012.2193551

21. Peroulis, D., K. Sarabandi, and L. P. B. Katehi, "Design of reconfigurable slot antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 645-654, 2005.
doi:10.1109/TAP.2004.841339

22. Lee, S. W. and Y. Sung, "Compact frequency reconfigurable antenna for lte/wwan mobile handset applications," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4572-4577, 2015.
doi:10.1109/TAP.2015.2456940

23. Khidre, A., F. Yang, and A. Z. Elsherbeni, "A patch antenna with a varactor-loaded slot for reconfigurable dual-band operation ," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 755-760, 2015.
doi:10.1109/TAP.2014.2376524

24. Haupt, R. L., "Re-configurable patch with switchable conductive edges," Microw. Opt. Technol. Lett., Vol. 51, No. 7, 1757-1760, 2009.
doi:10.1002/mop.24430

25. Haupt, R. L. and M. Lanagan, "Re-configurable antennas," IEEE Antennas Propag. Mag., Vol. 55, No. 1, 49-61, 2013.
doi:10.1109/MAP.2013.6474484

26. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Ap. Phys., Vol. 103, 064302-064302, 2008.
doi:10.1063/1.2891452

27. Cao, Y. S., L. J. Jiang, and A. E. Ruehli, "An equivalent circuit model for graphene-based terahertz antenna using the PEEC method," IEEE Trans. Antennas Prop., Vol. 64, 1385-1393, 2016.
doi:10.1109/TAP.2016.2521881

28. Gatte, M. T., P. J. Soh, H. A. Rahim, R. B. Ahmad, and F. Malek, "The performance improvement of THz antenna via modeling and characterization of doped graphene," Progress In Electromagnetics Research M, Vol. 49, 21-31, 2016.
doi:10.2528/PIERM16050405

29. Houaneb, Z., H. Zairi, A. Gharsallah, and H. Baudrand, "A new wave concept iterative method in cylindrical coordinates for modeling of circular planar circuits," Eighth Inter. Multi-Conference on Systems, Signals Devices, 1-7, 2011.

30. Hajlaoui, A., H. Trabelsi, and H. Baudrand, "Periodic planar multilayered substrates analysis using wave concept iterative process," J. Elec. Analy. Appl., Vol. 3, 118-128, 2012.

31. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "Analysis of planar circuits using a multigrid iterative method ," IEE Proc. Micro., Antennas and Prop., Vol. 153, 109-162, 2006.

32. Tellache, M., Y. Lamhene, B. Haraoubia, and H. Baudrand, "Application of wave concept iterative process to analys emicrowave planar circuits," Inter. J. App. Electr. and Mechanics, Vol. 29, 131-143, 2009.