Vol. 74
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-14
Study of Load Characteristics in Wireless Power Transfer System with Ferrite Core
By
Progress In Electromagnetics Research M, Vol. 74, 137-145, 2018
Abstract
For wireless power transfer via magnetic resonant coupling (MRC-WPT), magnetic coupling between resonant coils can be greatly enhanced when a ferrite core is introduced inside the coils. Based on the equivalent circuit model of wireless power transfer system, transfer characteristics of the MRC-WPT system with air resonant coils and a ferrite core are respectively analyzed in this paper. The influence mechanism of the load on the power transfer efficiency is investigated. Also, the requirement of load for improving transfer efficiency is derived when adding the ferrite core to the system. The numerical simulation and experiment result indicate that the transmission efficiency in the MRC-WPT system with ferrite core is higher than that in the counterpart with air resonant coils in the whole transfer region when the load is larger than the maximal critical load. In addition, for different transfer distances, the system efficiency for the system using the ferrite core tends to become lower than that in the air coil system when the load is smaller than the critical load.
Citation
Meng Wang, Jing Feng, Minghui Shen, and Yanyan Shi, "Study of Load Characteristics in Wireless Power Transfer System with Ferrite Core," Progress In Electromagnetics Research M, Vol. 74, 137-145, 2018.
doi:10.2528/PIERM18081609
References

1. Shinohara, N., "The wireless power transmission: inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 1, 337-346, 2012.
doi:10.1002/wene.43

2. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 1, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265

3. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Transactions on Industrial Electronics, Vol. 56, 3060-3068, 2009.
doi:10.1109/TIE.2009.2023633

4. Jiang, C., K. T. Chau, W. Han, and W. Liu, "Development of multilayer rectangular coils for multiple-receiver multiple-frequency wireless power transfer," Progress In Electromagnetics Research, Vol. 163, 15-24, 2018.

5. Kim, J. G., G. Wei, M. H. Kim, J. Y. Jong, and C. Zhu, "A comprehensive study on composite resonant circuit-based wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 65, No. 6, 4670-4680, 2018.
doi:10.1109/TIE.2017.2772207

6. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.

7. Li, C. J. and H. Ling, "Investigation of wireless power transfer using planarized, capacitor-loaded coupled loops," Progress In Electromagnetics Research, Vol. 148, 223-231, 2014.
doi:10.2528/PIER14071705

8. Fan, Y., L. Li, S. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711

9. Zhong, W. X. and S. Y. R. Hui, "Maximum energy efficiency operation of series-series resonant wireless power transfer systems using ON-OFF keying modulation," IEEE Trans. Power Electron., Vol. 33, No. 4, 3595-3603, 2018.
doi:10.1109/TPEL.2017.2709341

10. Zhang, J., X. Yuan, C.Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Trans. Power Electron., Vol. 32, No. 1, 341-352, 2017.
doi:10.1109/TPEL.2016.2526780

11. Kim, J., W. S. Choi, and J. Jeong, "Loop switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, 2013.
doi:10.2528/PIER13012118

12. Lee, S. B., S. Ahn, and I. G. Jang, "Simulation-based feasibility study on the wireless charging railway system with a ferriteless primary module," IEEE Trans. Veh. Technol., Vol. 64, No. 2, 1004-1010, 2017.
doi:10.1109/TVT.2016.2565703

13. Tran, D. H., V. B. Vu, and W. Choi, "Design of a high-efficiency wireless power transfer system with intermediate coils for the On-Board chargers of electric vehicles," IEEE Trans. Power Electron., Vol. 33, No. 1, 175-187, 2018.
doi:10.1109/TPEL.2017.2662067

14. Kong, S., et al. "An investigation of electromagnetic radiated emission and interference from multicoil wireless power transfer systems using resonant magnetic field coupling," IEEE Trans. on Micro. Theory Techn., Vol. 63, No. 3, 833-846, 2015.
doi:10.1109/TMTT.2015.2392096

15. Liu, X. C. and G. F. Wang, "A novel wireless power transfer system with double intermediate resonant coils," IEEE Trans. Ind. Electron., Vol. 63, No. 4, 2174-2180, 2016.

16. Hu, H. and S. V. Georgakopoulos, "Multiband and broadband wireless power transfer systems using the conformal strongly coupled magnetic resonance method," IEEE Trans. Ind. Electron., Vol. 64, No. 5, 3595-3607, 2017.
doi:10.1109/TIE.2016.2569459

17. Wang, M., J. Feng, Y. Shi, and M. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., to be published. DOI 10.1109/TIE.2018.2840485.

18. Zhang, W., C. J.White, M. A. Abraham, and C. C. Mi, "Loosely coupled transformer structure and interoperability study for EV wireless charging systems," IEEE Trans. Power Electron., Vol. 30, No. 11, 6356-6367, 2015.
doi:10.1109/TPEL.2015.2433678

19. Wang, S., D. G. Dorrell, Y. Guo, and M. F. Hsieh, "Inductive charging coupler with assistive coils," IEEE Trans. Magn., Vol. 52, No. 7, 1-4, 2016.

20. Antalunai, S., C. Thongsopa, and T. Thosdeekoraphat, "An increasing the power transmission efficiency of flat spiral coils by using ferrite materials for wireless power transfer applications," International Conference on Electrical Engineering/electronics, 1-4, Nakhon Ratchasima, Thailand, 2014.

21. Mohammad, M., S. Choi, Z. Islam, S. Kwak, and J. Baek, "Core design and optimization for better misalignment tolerance and higher range of wireless charging of PHEV," IEEE Trans. on Transport. Electrific., Vol. 3, No. 2, 445-453, 2017.
doi:10.1109/TTE.2017.2663662

22. Ding, W. and X. Wang, "Magnetically coupled resonant using Mn-Zn ferrite for wireless power transfer," 15th International Conference on Electronic Packaging Technology, 1561-1564, Chengdu, China, 2014.

23. Mohammad, M., S. Kwak, and S. Choi, "Core design for better misalignment tolerance and higher range of wireless charging for HEV," Applied Power Electronics Conference and Exposition (APEC), 1748-1755, Long Beach, CA, USA, 2016.

24. Huang, R., B. Zhang, D. Qiu, and Y. Zhang, "Frequency splitting phenomena of magnetic resonant coupling wireless power transfer," IEEE Trans. Magn., Vol. 50, No. 11, 1-4, 2014.

25. Theilmann, P. T. and P. M. Asbeck, "An analytical model for inductively coupled implantable biomedical devices with ferrite rods," IEEE Trans. Biomed. Circuits Syst., Vol. 3, No. 1, 43-52, 2009.
doi:10.1109/TBCAS.2008.2004776

26. Salas, R. A. and J. Pleite, "Simulation of waveforms of a ferrite Inductor with saturation and power losses," Materials, Vol. 7, No. 3, 1850-1865, 2014.
doi:10.3390/ma7031850