1. Forecast, Cisco VNI, "Cisco visual networking index: Global mobile data traffic forecast update 2009-2014 ,", Cisco Public Information, February 9, 2010.
doi:10.1109/MCOM.2014.6736752 Google Scholar
2. Wang, C.-X., et al. "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, No. 2, 122-130, 2014.
doi:10.1109/MCOM.2014.6894454 Google Scholar
3. Hong, W., K.-H. Baek, Y. Lee, Y. Kim, and S.-T. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, 2014.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
4. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/MWC.2016.1400374RP Google Scholar
5. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wireless Communications, Vol. 24, No. 2, 106-112, 2017.
doi:10.1109/MAP.2012.6309152 Google Scholar
6. Rowell, C. and E. Y. Lam, "Mobile-phone antenna design," IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, 14-34, 2012.
doi:10.1109/ACCESS.2014.2352679 Google Scholar
7. Haraz, O. M., A. Elboushi, S. A. Alshebeili, and A.-R. Sebak, "Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks," IEEE Access, Vol. 2, 909-913, 2014.
doi:10.1109/LAWP.2016.2601900 Google Scholar
8. Asaadi, M. and A. Sebak, "High-gain low-profile circularly polarized slotted SIW cavity antenna for MMW applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 752-755, 2017. Google Scholar
9. Jilani, S. F. and A. Alomainy, "Planar millimeter-wave antenna on low-cost flexible PET substrate for 5G applications," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, 2016.
doi:10.1109/LAWP.2016.2523514 Google Scholar
10. Park, J.-S., J.-B. Ko, H.-K. Kwon, B.-S. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1685-1688, 2016.
doi:10.1109/MAP.2014.7011015 Google Scholar
11. Sarabandi, K., J. Oh, L. Pierce, K. Shivakumar, and S. Lingaiah, "Lightweight, conformal antennas for robotic flapping flyers," IEEE Antennas and Propagation Magazine, Vol. 56, No. 6, 29-40, 2014. Google Scholar
12. Agnihotri, N., G. S. Karthikeya, K. Veeramalai, A. Prasanna, and S. S. Siddiq, "Super wideband conformal antenna array on cylindrical surface," 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), 1-4, IEEE, 2016. Google Scholar
13. Semkin, V., F. Ferrero, A. Bisognin, J. Ala-Laurinaho, C. Luxey, F. Devillers, and A. V. Raisanen, "Beam switching conformal antenna array for mm-wave communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 15-31, 2016.
doi:10.1109/LAWP.2013.2249037 Google Scholar
14. Si, L.-M., W. Zhu, and H.-J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 305-308, 2013.
doi:10.1109/APS.1995.530119 Google Scholar
15. Raman, S. and G. M. Rebeiz, "94GHz slot-ring antennas for monopulse applications," Antennas and Propagation Society International Symposium, 1995, AP-S, Digest, Vol. 1, 722-725, IEEE, 1995. Google Scholar
16. Zhai, G., Y. Cheng, Q. Yin, S. Zhu, and J. Gao, "Uniplanar millimeter-wave log-periodic dipole array antenna fed by coplanar waveguide," International Journal of Antennas and Propagation, Vol. 2013, 2013. Google Scholar
17. Elsheakh, D. M. and M. F. Iskander, "Circularly polarized triband printed quasi-Yagi antenna for millimeter-wave applications," International Journal of Antennas and Propagation, Vol. 2015, 2015.
doi:10.1109/TMTT.1986.1133562 Google Scholar
18. Jackson, R. W., "Considerations in the use of coplanar waveguide for millimeter-wave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 12, 1450-1456, 1986. Google Scholar
19. Jilani, S. F., S. M. Abbas, K. P. Esselle, and A. Alomainy, "Millimeter-wave frequency reconfigurable T-shaped antenna for 5G networks," 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 100-102, IEEE, 2005.
doi:10.1109/TAP.2016.2574881 Google Scholar
20. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Single end-fire antenna for dual-beam and broad beamwidth operation at 60 GHz by artificially modifying the permittivity of the antenna substrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 4068-4073, 2016.
doi:10.1109/TAP.2008.929506 Google Scholar
21. Alhalabi, R. A. and G. M. Rebeiz, "High-efficiency angled-dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, 2008.
doi:10.1109/TAP.2009.2039320 Google Scholar
22. Alhalabi, R. A. and G. M. Rebeiz, "Differentially-fed millimeter-wave Yagi-Uda antennas with Differentially-fed millimeter-wave Yagi-Uda antennas with," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 966-969, 2010. Google Scholar