Vol. 87
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-10-16
CPW Fed Conformal Folded Dipole with Pattern Diversity for 5G Mobile Terminals
By
Progress In Electromagnetics Research C, Vol. 87, 199-212, 2018
Abstract
A coplanar waveguide (CPW) fed folded dipole with a 20% impedance bandwidth and 4-6 dBi endfire gain with stable patterns is proposed. Since the proposed element is electrically large (2.1λ x 2λ) conformal topology of this endfire radiator is designed and characterized. The input impedance is not altered significantly compared to the planar element. The radiation in the H plane indicates an increase in specific absorption rate when integrated with a typical mobile terminal. In order to mitigate this effect, a compact (0.8λ x 0.8λ) wideband reflector with periodic sinusoidal slots is proposed and mounted with the conformal element at an offset of 0.2λ from the radiator. The proposed antenna has an operating bandwidth from 24 to 30 GHz (20%) with an endfire gain of 6-7 dBi across the band. The front to back ratio is more than 12 dB across the band. Pattern diversity of the conformal antenna is also investigated. Simulated and measurement results are presented in detail.
Citation
Gulur Sadananda Karthikeya Mahesh Pandurang Abegaonkar Shiban Kishen Koul , "CPW Fed Conformal Folded Dipole with Pattern Diversity for 5G Mobile Terminals," Progress In Electromagnetics Research C, Vol. 87, 199-212, 2018.
doi:10.2528/PIERC18082902
http://www.jpier.org/PIERC/pier.php?paper=18082902
References

1. Forecast, Cisco VNI, "Cisco visual networking index: Global mobile data traffic forecast update 2009-2014 ,", Cisco Public Information, February 9, 2010.
doi:10.1109/MCOM.2014.6736752

2. Wang, C.-X., et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, No. 2, 122-130, 2014.
doi:10.1109/MCOM.2014.6894454

3. Hong, W., K.-H. Baek, Y. Lee, Y. Kim, and S.-T. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, 2014.
doi:10.1109/ACCESS.2013.2260813

4. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/MWC.2016.1400374RP

5. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wireless Communications, Vol. 24, No. 2, 106-112, 2017.
doi:10.1109/MAP.2012.6309152

6. Rowell, C. and E. Y. Lam, "Mobile-phone antenna design," IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, 14-34, 2012.
doi:10.1109/ACCESS.2014.2352679

7. Haraz, O. M., A. Elboushi, S. A. Alshebeili, and A.-R. Sebak, "Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks," IEEE Access, Vol. 2, 909-913, 2014.
doi:10.1109/LAWP.2016.2601900

8. Asaadi, M. and A. Sebak, "High-gain low-profile circularly polarized slotted SIW cavity antenna for MMW applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 752-755, 2017.

9. Jilani, S. F. and A. Alomainy, "Planar millimeter-wave antenna on low-cost flexible PET substrate for 5G applications," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, 2016.
doi:10.1109/LAWP.2016.2523514

10. Park, J.-S., J.-B. Ko, H.-K. Kwon, B.-S. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1685-1688, 2016.
doi:10.1109/MAP.2014.7011015

11. Sarabandi, K., J. Oh, L. Pierce, K. Shivakumar, and S. Lingaiah, "Lightweight, conformal antennas for robotic flapping flyers," IEEE Antennas and Propagation Magazine, Vol. 56, No. 6, 29-40, 2014.

12. Agnihotri, N., G. S. Karthikeya, K. Veeramalai, A. Prasanna, and S. S. Siddiq, "Super wideband conformal antenna array on cylindrical surface," 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), 1-4, IEEE, 2016.

13. Semkin, V., F. Ferrero, A. Bisognin, J. Ala-Laurinaho, C. Luxey, F. Devillers, and A. V. Raisanen, "Beam switching conformal antenna array for mm-wave communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 15-31, 2016.
doi:10.1109/LAWP.2013.2249037

14. Si, L.-M., W. Zhu, and H.-J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 305-308, 2013.
doi:10.1109/APS.1995.530119

15. Raman, S. and G. M. Rebeiz, "94GHz slot-ring antennas for monopulse applications," Antennas and Propagation Society International Symposium, 1995, AP-S, Digest, Vol. 1, 722-725, IEEE, 1995.

16. Zhai, G., Y. Cheng, Q. Yin, S. Zhu, and J. Gao, "Uniplanar millimeter-wave log-periodic dipole array antenna fed by coplanar waveguide," International Journal of Antennas and Propagation, Vol. 2013, 2013.

17. Elsheakh, D. M. and M. F. Iskander, "Circularly polarized triband printed quasi-Yagi antenna for millimeter-wave applications," International Journal of Antennas and Propagation, Vol. 2015, 2015.
doi:10.1109/TMTT.1986.1133562

18. Jackson, R. W., "Considerations in the use of coplanar waveguide for millimeter-wave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 12, 1450-1456, 1986.

19. Jilani, S. F., S. M. Abbas, K. P. Esselle, and A. Alomainy, "Millimeter-wave frequency reconfigurable T-shaped antenna for 5G networks," 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 100-102, IEEE, 2005.
doi:10.1109/TAP.2016.2574881

20. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Single end-fire antenna for dual-beam and broad beamwidth operation at 60 GHz by artificially modifying the permittivity of the antenna substrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 4068-4073, 2016.
doi:10.1109/TAP.2008.929506

21. Alhalabi, R. A. and G. M. Rebeiz, "High-efficiency angled-dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, 2008.
doi:10.1109/TAP.2009.2039320

22. Alhalabi, R. A. and G. M. Rebeiz, "Differentially-fed millimeter-wave Yagi-Uda antennas with Differentially-fed millimeter-wave Yagi-Uda antennas with," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 966-969, 2010.