Vol. 89
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-12-20
Electroquasistatic Model of Capacitive Hyperthermia Affected by Heat Convection
By
Progress In Electromagnetics Research C, Vol. 89, 61-74, 2019
Abstract
An electroquasistatic (EQS) model of capacitive hyperthermia for treating lung tumors is proposed, based on which the finite element method is applied to compute the electrical potential in a human thorax model. The temperature distribution in the thorax model, which is surrounded by a bolus maintained at a constant temperature, is computed by numerically solving a bioheat equation, which includes metabolic heat generated in the tissues, heat convection mechanism in tissues and bolus, as well as the heat delivered by the microwave field computed with the EQS model and finite element method. Temperature-dependent blood perfusion rates of blood and muscle, respectively, are adopted to account for the physiological reaction of tissues to temperature variation. By simulations, it is observed that adjusting the dielectric properties of adipose tissue via injection, the time evolution of temperature distribution can be controlled to some extent, providing more flexibility to customize a hyperthermia treatment plan for specific patient.
Citation
Chien-Chang Chen, and Jean-Fu Kiang, "Electroquasistatic Model of Capacitive Hyperthermia Affected by Heat Convection," Progress In Electromagnetics Research C, Vol. 89, 61-74, 2019.
doi:10.2528/PIERC18092504
References

1. Hegyi, G., G. P. Szigeti, and A. Szász, "Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy," Evidence-Based Complementary Alternative Medicine, Vol. 2013, 672873, Jan. 2013.
doi:10.1155/2013/672873        Google Scholar

2. Ohguri, T., K. Yahara, S. D. Moon, S. Yamaguchi, H. Imada, H. Terashima, and Y. Korogi, "Deep regional hyperthermia for the whole thoracic region using 8 MHz radiofrequency-capacitive heating device: Relationship between the radiofrequency-output power and the intra-oesophageal temperature and predictive factors for a good heating in 59 patients," Int. J. Hyperthermia, Vol. 27, No. 1, 20-26, Feb. 2011.
doi:10.3109/02656736.2010.500644        Google Scholar

3. Jamil, M. and E. Y. K. Ng, "To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective," J. Therm. Biol., Vol. 38, No. 5, 272-279, Jul. 2013.
doi:10.1016/j.jtherbio.2013.03.007        Google Scholar

4. Kotsuka, Y., H. Kayahara, K. Murano, H. Matsui, and M. Hamuro, "Local inductive heating method using novel high-temperature implant for thermal treatment of luminal organs," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 10, 2574-2580, Oct. 2009.
doi:10.1109/TMTT.2009.2029743        Google Scholar

5. Kowalski, M. E. and J.-M. Jin, "Model-based optimization of phased arrays for electromagnetic hyperthermia," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, 1964-1977, Aug. 2004.
doi:10.1109/TMTT.2004.831987        Google Scholar

6. Staruch, R., R. Chopra, and K. Hynynen, "Hyperthermia in bone generated with MR imaging controlled focused ultrasound: Control strategies and drug delivery," Radiology, Vol. 263, No. 1, 117-127, Apr. 2012.
doi:10.1148/radiol.11111189        Google Scholar

7. Chen, X., C. J. Diederich, J. H. Wootton, J. Pouliot, and I.-C. Hsu, "Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia," Int. J. Hyperthermia, Vol. 26, No. 1, 39-55, Feb. 2010.
doi:10.3109/02656730903341332        Google Scholar

8. Szasz, A., O. Szasz, and N. Szasz, "Physical background and technical realizations of hyperthermia," Hyperthermia in Cancer Treatment: A Primer, G. F. Baronzio and E. D. Hager, ed., Medical Intelligence Unit, 2006.        Google Scholar

9. Hiraoka, M., M. Mitsumori, N. Hiroi, S. Ohno, Y. Tanaka, Y. Kotsuka, and K. Sugimachi, "Development of RF and microwave heating equipment and clinical application to cancer treatment in Japan," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1789-1799, Nov. 2000.        Google Scholar

10. Tao, Y.-H. and G. Wang, "Conformal hyperthermia of superficial tumor with left-handed metamaterial lens applicator," IEEE Trans. Biomed. Eng., Vol. 59, No. 12, 3525-3530, Dec. 2012.
doi:10.1109/TBME.2012.2218108        Google Scholar

11. Hand, J. W., "Modelling the interaction of electromagnetic fields (10 MHz-10 GHz) with the human body: Methods and applications," Phys. Med. Biol., Vol. 53, R243-R286, 2008.
doi:10.1088/0031-9155/53/16/R01        Google Scholar

12. Aghayan, S. A., D. Sardari, S. R. M. Mahdavi, and M. H. Zahmatkesh, "Estimation of overall heat transfer coefficient of cooling system in RF capacitive hyperthermia," J. Biomed. Sci. Eng., Vol. 6, No. 5, 509-517, 2013.
doi:10.4236/jbise.2013.65065        Google Scholar

13. Kok, H. P., M. de Greef, N. vanWieringen, D. Correia, M. C. C.M. Hulshof, P. J. ZumVöRde Sive VöRding, J. Sijbrands, A. Bel, and J. Crezee, "Comparison of two different 70 MHz applicators for large extremity lesions: Simulation and application," Int. J. Hyperthermia, Vol. 26, No. 4, 376-388, Jun. 2010.
doi:10.3109/02656730903521383        Google Scholar

14. Kato, H., M. Kondo, H. Imada, M. Kuroda, Y. Kamimura, K. Saito, K. Kuroda, K. Ito, H. Takahashi, and H. Matsuki, "Quality assurance: Recommended guidelines for safe heating by capacitive-type heating technique to treat patients with metallic implants," Int. J. Hyperthermia, Vol. 29, No. 2, 99-105, Feb. 2013.
doi:10.3109/02656736.2012.760137        Google Scholar

15. Kok, H. P., P. Wust, P. R. Stauffer, F. Bardati, G. C. van Rhoon, and J. Crezee, "Current state of the art of regional hyperthermia treatment planning: A review," Radiation Oncology, Vol. 10, No. 196, Sep. 2015.        Google Scholar

16. Kok, H. P., J. Gellermann, C. A. T. van den Berg, P. R. Stauffer, J. W. Hand, and J. Crezee, "Thermal modelling using discrete vasculature for thermal therapy: A review," Int. J. Hyperthermia, Vol. 29, No. 4, 336-345, Jun. 2013.
doi:10.3109/02656736.2013.801521        Google Scholar

17. Kim, K., T. Seo, K. Sim, and Y. Kwon, "Magnetic nanoparticle-assisted microwave hyperthermia using an active integrated heat applicator," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 7, 2184-2197, Jul. 2016.
doi:10.1109/TMTT.2016.2573276        Google Scholar

18. Hassanpour, S. and A. Saboonchi, "Interstitial hyperthermia treatment of countercurrent vascular tissue: A comparison of Pennes, WJ and porous media bioheat models," J. Therm. Biol., Vol. 46, 47-55, Dec. 2014.
doi:10.1016/j.jtherbio.2014.10.005        Google Scholar

19. Dombrovsky, L. A., V. Timchenko, and M. Jackson, "Indirect heating strategy of laser induced hyperthermia: An advanced thermal model," Int. J. Heat Mass Transfer, Vol. 55, No. 17-18, 4688-4700, Aug. 2012.
doi:10.1016/j.ijheatmasstransfer.2012.04.029        Google Scholar

20. Astefanoaei, I., I. Dumitru, H. Chiriac, and A. Stancu, "Use of the Fe-Cr-Nb-B systems with low Curie temperature as mediators in magnetic hyperthermia," IEEE Trans. Magn., Vol. 50, No. 11, 7400904, Nov. 2014.        Google Scholar

21. Jamil, M. and E. Y. K. Ng, "The modelling of heating a tissue subjected to external electromagnetic field," Acta Bioeng. Biomech., Vol. 10, No. 2, 29-37, 2008.        Google Scholar

22. Lv, Y.-G., Z.-S. Deng, and J. Liu, "3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field," IEEE Trans. Nanobiosci., Vol. 4, No. 4, 284-294, Dec. 2005.
doi:10.1109/TNB.2005.859549        Google Scholar

23. Zhong, J.-Q., S. Liang, Y.-P. Yuan, and Q. Y. Xiong, "Coupled electromagnetic and heat transfer ODE model for microwave heating with temperature-dependent permittivity," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 8, 2467-2477, Aug. 2016.
doi:10.1109/TMTT.2016.2584613        Google Scholar

24. Kawai, N., D. Kobayashi, T. Yasui, Y. Umemoto, K. Mizuno, A. Okada, K. Tozawa, T. Kobayashi, and K. Kohri, "Evaluation of side effects of radiofrequency capacitive hyperthermia with magnetite on the blood vessel walls of tumor metastatic lesion surrounding the abdominal large vessels: An agar phantom study," Vascular Cell, Vol. 6, No. 15, Jul. 2014.        Google Scholar

25. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Trans. Antennas Propagat., Vol. 64, No. 10, 4355-4364, Jul. 2016.
doi:10.1109/TAP.2016.2593748        Google Scholar

26. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Wiley-IEEE Press, 2006.
doi:10.1002/0471786381

27. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994.
doi:10.1137/1.9781611971538

28. Tsuda, N., K. Kuroda, and Y. Suzuki, "An inverse method to optimize heating conditions in RF-capacitive hyperthermia," IEEE Trans. Biomed. Eng., Vol. 43, No. 10, 1029-1037, 1996.
doi:10.1109/10.536904        Google Scholar

29. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Ed., Chap. 3, Finite Difference Method, CRC Press, Jul. 2000.

30. Abe, M., M. Hiraoka, M. Takahashi, S. Egawa, C. Matsuda, Y. Onoyama, K. Morita, M. Kakehi, and T. Sugahara, "Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy," Cancer, Vol. 58, No. 8, 1589-1595, Oct. 1986.
doi:10.1002/1097-0142(19861015)58:8<1589::AID-CNCR2820580802>3.0.CO;2-B        Google Scholar

31. Holcombe, S. A. and S. C. Wang, "Subcutaneous fat distribution in the human torso," Int. Res. Council Biomechanics Injury, 389-396, 2014.        Google Scholar

32. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, No. 11, 2251-2269, Nov. 1996.
doi:10.1088/0031-9155/41/11/002        Google Scholar

33. Wang, H.-X., J.-R. Wang, B.-Y. Sun, S. P., X. Xu, and Q. Su, "Experimental study of dielectric properties of human lung tissue in vitro," J. Med. Biol. Eng., Vol. 34, No. 6, 598-604, 2014.        Google Scholar

34. Kim, K. S. and S. Y. Lee, "Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry," Int. J. Hyperthermia, Vol. 31, No. 8, 831-839, Nov. 2015.
doi:10.3109/02656736.2015.1096968        Google Scholar

35. Lee, J. M., Y. K. Kim, Y. H. Lee, S. W. Kim, C. A. Li, and C. S. Kim, "Percutaneous radiofrequency thermal ablation with hypertonic saline injection: In vivo study in a rabbit liver model," Korean J. Radiol., Vol. 4, No. 1, 27-34, Jan.-Mar. 2003.
doi:10.3348/kjr.2003.4.1.27        Google Scholar

36. Choi, J.-H., M. Morrissey, and J. C. Bischof, "Thermal processing of biological tissue at high temperatures: Impact of protein denaturation and water loss on the thermal properties of human and porcine liver in the range 25-80˚C," J. Heat Transfer, Vol. 135, No. 6, 061302, May 2013.
doi:10.1115/1.4023570        Google Scholar

37. Wilson, S. B. and V. A. Spence, "A tissue heat transfer model for relating dynamic skin temperature changes to physiological parameters," Phys. Med. Biol., Vol. 33, No. 8, 895-912, Feb. 1988.
doi:10.1088/0031-9155/33/8/001        Google Scholar

38. Itis.ethz.ch "Tissue properties database V3.1,", 2016, https://itis.swiss/virtual-population/tissue-properties/downloads/database-v3-1/.        Google Scholar

39. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900 MHz range," IEEE Trans. Biomed. Eng., Vol. 50, No. 3, 295-304, 2003.
doi:10.1109/TBME.2003.808809        Google Scholar

40. Zorbas, G. and T. Samaras, "Simulation of radiofrequency ablation in real human anatomy," Int. J. Hyperthermia, Vol. 30, No. 8, 570-578, Dec. 2014.
doi:10.3109/02656736.2014.968639        Google Scholar

41. Ye, J. C., J. H. Chang, Z. Q. Li, A. G. Wernicke, D. Nori, and B. Parashar, "Tumor density, size, and histology in the outcome of stereotactic body radiation therapy for early-stage non-small-cell lung cancer: A single-institution experience," Ann. Meeting Am. Radium Soc., Apr. 2015.        Google Scholar

42. Ng, Q. S., V. Goh, E. Klotz, H. Fichte, M. I. Saunders, P. J. Hoskinl, and A. R. Padhani, "Quantitative assessment of lung cancer perfusion using MDCT: Does measurement reproducibility improve with greater tumor volume coverage?," Am. J. Roentgenol., Vol. 187, No. 4, 1079-1084, Oct. 2006.
doi:10.2214/AJR.05.0889        Google Scholar

43. Rossmann, C. and D. Haemmerich, "Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures," Crit. Rev. Biomed. Eng., Vol. 42, No. 6, 467-492, 2014.
doi:10.1615/CritRevBiomedEng.2015012486        Google Scholar

44. Lang, J., B. Erdmann, and M. Seebass, "Impact of nonlinear heat transfer on temperature control in regional hyperthermia," IEEE Trans. Biomed. Eng., Vol. 46, No. 9, 1129-1138, Sep. 1999.
doi:10.1109/10.784145        Google Scholar