1. Thorn, R., G. A. Johansen, and B. T. Hjertaker, "Three-phase flow measurement in the petroleum industry," Measurement Science and Technology, Vol. 24, No. 1, 1-17, 2013.
doi:10.1088/0957-0233/24/1/012003 Google Scholar
2. Figueiredo, M. M. F., J. L. Goncalves, A. M. V. Nakashima, and R. D. M. Carvalho, "The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows," Experimental Thermal and Fluid Science, Vol. 70, 29-50, 2016.
doi:10.1016/j.expthermflusci.2015.08.010 Google Scholar
3. Franco, Jr., E. F., R. M. Salgado, and T. Ohishi, "Analysis of two-phase flow pattern identification methodologies for embedded systems," IEEE Latin America Transactions, Vol. 16, No. 3, 718-727, 2018.
doi:10.1109/TLA.2018.8358647 Google Scholar
4. Xie, S. W., J. Z. Gao, and Z. T. Wen, "The optimal design of the new tube inside and outside differential pressure flow meter," Applied Mechanics and Materials, Vol. 541, No. 7, 1283-1287, 2014. Google Scholar
5. Ghanei, S., M. Kashefi, and M. Mazinani, "Eddy current nondestructive evaluation of dual phase steel," Materials & Design, Vol. 50, No. 17, 491-496, 2013.
doi:10.1016/j.matdes.2013.03.040 Google Scholar
6. Al-Naser, M., M. Elshafei, and A. M. Al-Sarkhi, "Artificial neural network application for multiphase flow patterns detection: A new approach," Journal of Petroleum Science and Engineering, Vol. 145, 548-564, 2016.
doi:10.1016/j.petrol.2016.06.029 Google Scholar
7. Sun, H. J., Z. J. Liu, and L. F. Wang, "Research on the installation location of the vortex probe for gas-liquid two-phase flow with low liquid fraction," Journal of Mechanical Engineering, Vol. 50, No. 4, 167-171, 2014.
doi:10.3901/JME.2014.04.167 Google Scholar
8. Gao, Z., Y. Yang, L. Zhai, N. Jin, and G. Chen, "A four-sector conductance method for measuring and characterizing low-velocity oil-water two-phase flows," IEEE Transactions on Instrumentation & Measurement, Vol. 65, No. 7, 1690-1697, 2016.
doi:10.1109/TIM.2016.2540862 Google Scholar
9. Faraj, Y., M. Wang, and J. Jia, "Automated horizontal slurry flow regime recognition using statistical analysis of the ERT signal," Procedia Engineering, Vol. 102, 821-830, 2015.
doi:10.1016/j.proeng.2015.01.198 Google Scholar
10. Wang, H. G., G. R. Zhao, and G. Z. Qiu, "Investigation the solid phase distribution in the inlet of multi-cyclone of a circulating fluidized bed by electrical capacitance tomography," Journal of Engineering Thermophysics, Vol. 35, No. 1, 109-113, 2014. Google Scholar
11. Madhavi, S., H. Sagar, and R. Vivek, "Void fraction measurement using electrical capacitance tomography and high speed photography," Chemical Engineering Research and Design, Vol. 94, 1-11, 2015. Google Scholar
12. Yang, D. Y., R. Guo, and X. R. Wang, "Application of electrical capacitance tomography on lubricating oil film in journal bearings," Proceedings of the CSEE, Vol. 32, No. 5, 187-190, 2012. Google Scholar
13. Hamidipour, A., T. Henriksson, and M. Hopfer, "Electromagnetic tomography for brain imaging and stroke diagnostics: Progress towards clinical application," Cells Tissues Organs, Vol. 166, No. 2, 233-246, 2018. Google Scholar
14. Liu, Z. W. Li, and F. Xue, "Electromagnetic tomography rail defect inspection," IEEE Transactions on Magnetics, Vol. 51, No. 10, 1-7, 2015. Google Scholar
15. Mayank, G., M. Prabhat, K. Ashok, and S. Anupam, "Nonuniform arrangement of emitter-receiver pairs arrangement and compact ultrasonic tomography setup," IEEE Sensors Journal, Vol. 15, No. 2, 1198-1207, 2014. Google Scholar
16. Fu, Y., C. Tan, and F. Dong, "Analysis of response for magnetic induction tomography with internal source," Measurement, Vol. 78, No. 1, 260-277, 2016.
doi:10.1016/j.measurement.2015.10.019 Google Scholar
17. Dekdouk, B., C. Ktistis, and D. W. Armitage, "Absolute imaging of low conductivity material distributions using nonlinear reconstruction methods in magnetic induction tomography," Progress In Electromagnetics Research, Vol. 155, 1-18, 2016.
doi:10.2528/PIER15071705 Google Scholar
18. Wei, H. Y. and M. Soleimani, "Two-phase low conductivity flow imaging using magnetic induction tomography," Progress in Electromagnetics Research, Vol. 131, No. 20, 99-115, 2012.
doi:10.2528/PIER12070615 Google Scholar
19. Lu, M., H. Andy, and S. Manuchehr, "Experimental evaluation of conductive flow imaging using magnetic induction tomography," International Journal of Multiphase Flow, Vol. 72, No. 20, 198-209, 2015. Google Scholar
20. Roshani, G. H., E. Nazemi, and M. M. Roshani, "Identification of flow regime and estimation of volume fraction independent of liquid phase density in gas-liquid two-phase flow," Progress In Nuclear Energy, Vol. 98, 29-37, 2017.
doi:10.1016/j.pnucene.2017.02.004 Google Scholar
21. Zhang, J. and T. Zhang, "Research on signal amplitude of the Kármán vortex street in gas-liquid two-phase flow with high void fraction," Flow Measurement & Instrumentation, Vol. 41, 158-164, 2015.
doi:10.1016/j.flowmeasinst.2014.12.001 Google Scholar