Vol. 91
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-04-18
Low-Power Microwave Induced Thermoacoustic Imaging: Experimental Study and Hybrid FEM Modeling
By
Progress In Electromagnetics Research C, Vol. 91, 265-277, 2019
Abstract
Microwave induced thermoacoustic imaging (TAI) is a hybrid imaging technique combining microwaves and ultrasound waves to achieve both superior spatial resolution and high image contrast. Here, we present results from a hybrid finite element model and an experimental setup using a microwavem peak power of less than 5 kW (average power of only 4.5 W), significantly less than for comparable imaging performance in previous works. Microwave pulses with a duration less than 1 μs are used to excite ultrasound waves with a frequency higher than 1 MHz. Experimental measurements show agreement with simulation results using hybrid finite element modeling capturing microwave heating and acoustic wave propagation. Simulations suggest targets with a conductivity of approximately 0.9 S/m yield the strongest thermoacoustic signatures. Both B-mode images and time-reversal based reconstructed images are obtained and clearly demonstrate the enhanced contrast and high resolution by exploiting the dielectric absorption properties of microwaves and the sub-millimeter resolution of ultrasound. The use of a time reversal algorithm on recorded data demonstrates the effectiveness of TAI for biomedical applications. Standing wave patterns are identified in targets and their relation to the target characteristics and their effect on the resulted images are investigated. The novelty of this work is in lowering the microwave average power while still being able to detect induced acoustic signals, along with developing a numerical model to provide an insight into the imaging process and analyze anomalies in image reconstruction.
Citation
Ryan Jacobs, Mohand Alzuhiri, Mark Golkowski, and Yiming Deng, "Low-Power Microwave Induced Thermoacoustic Imaging: Experimental Study and Hybrid FEM Modeling," Progress In Electromagnetics Research C, Vol. 91, 265-277, 2019.
doi:10.2528/PIERC18100101
References

1. Chan, V. and A. Perlas, "Basics of ultrasound imaging," Atlas of Ultrasound-Guided Procedures in Interventional Pain Management, 13-19, Springer New York, 2011.

2. Fink, M. and M. Tanter, "Multiwave imaging and super resolution," Phys. Today, Vol. 63, 28-33, 2010, 10.1063/1.3326986.
doi:10.1063/1.3326986

3. Bowen, T., "Radiation-induced thermoacoustic soft tissue imaging," 1981 Ultrasonics Symposium, 817-822, Chicago, IL, USA, 1981.

4. Bowen, T., R. L. Nasoni, A. E. Pifer, and G. H. Sembroski, "Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials," 1981 Ultrasonics Symposium, 823-827, Chicago, IL, USA, 1981.

5. Kruger, R. A., K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, "Thermoacoustic CT with radio waves: A medical imaging paradigm," Radiology, Vol. 211, 275-278, 1999.
doi:10.1148/radiology.211.1.r99ap05275

6. Mashal, A., J. H. Booske, and S. C. Hagness, "Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles simple thermosacoustic targets," Phys. Med. Biol., Vol. 54, 641-650, 2009.
doi:10.1088/0031-9155/54/3/011

7. Deng, Y. and M. Golkowski, "Innovative biomagnetic imaging sensors for breast cancer: A modelbased study," J. Appl. Phys., Vol. 111, 07B323, 2012.
doi:10.1063/1.3676430

8. Xu, M., G. Ku, X. Jin, L. V. Wang, B. D. Fornage, and K. K. Hunt, "Breast cancer imaging by microwave-induced thermoacoustic tomography," Proc. SPIE 5697, Photons Plus Ultrasound: Imaging and Sensing 2005: The Sixth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Vol. 45, May 05, 2005.

9. Chen, G. P., et al. "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, 11-12, 1565–1574, 2008.

10. Ammari, H., et al. "Quantitative thermo-acoustic imaging: An exact reconstruction formula," Journal of Differential Equations, Vol. 254, No. 3, 1375-1395, 2013.
doi:10.1016/j.jde.2012.10.019

11. Xu, Y., M. Xu, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry," IEEE Transactions on Medical Imaging, Vol. 21, No. 7, 829-833, 2002.
doi:10.1109/TMI.2002.801171

12. Xu, Y., D. Feng, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry," IEEE Transactions on Medical Imaging, Vol. 21, No. 7, 823-828, 2002.
doi:10.1109/TMI.2002.801172

13. Xie, Y., B. Guo, J. Li, G. Ku, and L. V Wang, "Adaptive and robust methods of reconstruction,", Vol. 55, No. 12, 2741-2752, 2008.

14. Eckhart, A. T., R. T. Balmer, W. A. See, and S. K. Patch, "Ex vivo thermoacoustic imaging over large fields of view with 108 MHz irradiation," IEEE Trans. Biomed. Eng., Vol. 58, No. 8, 2238-2246, 2011.
doi:10.1109/TBME.2011.2128319

15. Wang, X., D. Bauer, R. Witte, and H. Xin, "Microwave-induced thermoacoustic imaging model for potential breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 06, No. 01, 1350001, 2012.

16. Zhu, X., Z. Zhao, J. Wang, G. Chen, and Q. H. Liu, "Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor," IEEE Trans. Biomed. Eng., Vol. 61, No. 7, 1957-1966, 2014.
doi:10.1109/TBME.2014.2309912

17. Song, J., et al., "Evaluation of contrast enhancement by carbon nanotubes for microwave-induced thermoacoustic tomography," IEEE Trans. Biomed. Eng., Vol. 62, No. 3, 930-938, 2015.
doi:10.1109/TBME.2014.2373397

18. Lou, C., S. Yang, Z. Ji, Q. Chen, and D. Xing, "Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution," Phys. Rev. Lett., Vol. 109, No. 21, 15, 2012.
doi:10.1103/PhysRevLett.109.218101

19. Razansky, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Med. Phys., Vol. 37, No. 9, 4602-4607, 2010.
doi:10.1118/1.3467756

20. Nan, H. and A. Arbabian, "Peak-power-limited frequency-domain microwave-induced thermoacoustic imaging for handheld diagnostic and screening tools," IEEE Trans. Microw. Theory Tech., Vol. 110, 2017.

21. Wang, K. and M. A. Anastasio, "Photoacoustic and thermoacoustic tomography: Image formation principles," Handbook of Mathematical Methods in Imaging, O. Scherzer (ed.), 2011.

22., COMSOL Multiphysics v. 5.2, www.comsol.com. COMSOL AB, Stockholm, Sweden.

23. Maxwell, E., "Conductivity of Metallic Surfaces at Microwave Frequencies," Journal of Applied Physics, Vol. 18, No. 7, 629-638, 1947.
doi:10.1063/1.1697818

24. Hristova, Y., P. Kuchment, and L. Nguyen, "Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media," Inverse Probl., Vol. 24, No. 5, 55006, 2008.
doi:10.1088/0266-5611/24/5/055006

25. Chen, G., Z. Zhao, Z. Nie, and Q. H. Liu, "Computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2191-2204, 2008.
doi:10.1163/156939308787522555

26. Treeby, B. E. and B. T. Cox, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields," J. Biomed. Opt., Vol. 15, No. 2, 021314, 2010.
doi:10.1117/1.3360308

27. Kuchment, P. and L. Kunyansky, "Mathematics of photoacoustic and thermoacoustic tomography," Handbook of Mathematical Methods in Imaging, 881-865, 2011.

28. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001