Vol. 88
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-11-16
Numerical Study of a Photonic Jet with Aperiodic Fourier Modal Method and Experimental Validation
By
Progress In Electromagnetics Research C, Vol. 88, 133-143, 2018
Abstract
This paper proposes to use an Aperiodic Fourier Modal Method (A-FMM) to model an outgoing photonic jet from a dielectric loaded waveguide ended by a tip with a speci c shape. The proposed method has several advantages. First of all, the method is fast, which allows to manage optimization investigations. Secondly, the study excitation (and more particularly the impact of plan wave excitation) can be examined precisely. Using our modelling technique, we show, in comparison with an actual optimized elliptical tip, that an optimized rectangular tip improves energy concentration by 8% and reduces the calculation time by a factor of 10. Furthermore, A-FMM allows to show that plane wave excitation modifies the spatial distribution of the jet, especially in the case of TE polarization. This can explain the differences observed, in previous works, where only fundamental mode excitation was used in the modelling. To validate these general results, prototypes have been realized, and measurements in the microwave regime have been compared favorably with simulation results.
Citation
Hishem Hyani Bruno Sauviac M. Kofi Edee Gerard Granet Stephane Robert , "Numerical Study of a Photonic Jet with Aperiodic Fourier Modal Method and Experimental Validation," Progress In Electromagnetics Research C, Vol. 88, 133-143, 2018.
doi:10.2528/PIERC18100206
http://www.jpier.org/PIERC/pier.php?paper=18100206
References

1. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, No. 7, 1214-1220, 2004.
doi:10.1364/OPEX.12.001214

2. Kong, S.-C., A. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express, Vol. 16, No. 18, 13713-13719, 2008.
doi:10.1364/OE.16.013713

3. Kong, S.-C., A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Applied Physics Letters, Vol. 92, No. 21, 211102, 2008.
doi:10.1063/1.2936993

4. Itagi, A. V. and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A, Vol. 22, No. 12, 2847-2858, Dec. 2005.
doi:10.1364/JOSAA.22.002847

5. Lecler, S., Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Optics Letters, Vol. 30, No. 19, 2641-2643, Oct. 2005.
doi:10.1364/OL.30.002641

6. Liu, C.-Y., "Photonic jets produced by dielectric micro cuboids," Appl. Opt., Vol. 54, No. 29, 8694-8699, Oct. 2015.
doi:10.1364/AO.54.008694

7. Ju, D., H. Pei, Y. Jiang, and X. Sun, "Controllable and enhanced nanojet effects excited by surface plasmon polariton," Appl. Phys. Lett., Vol. 102, No. 171109, 2013.

8. Khaleque, A. and Z. Li, "Tailoring the properties of photonic nanojets by changing the material and geometry of the concentrator," Progress In Electromagnetics Research Letters, Vol. 48, 7-13, 2014.
doi:10.2528/PIERL14052108

9. Lecler, S., H. Halaq, Y. Takakura, P. Gérard, B. Bayard, S. Robert, and B. Sauviac, "Jet photonique en sortie d’un guide d’onde: De nouvelles perspectives," (JNOG) Marseille, Juillet, France, 2011.

10. Takakura, Y., H. Halaq, S. Lecler, S. Robert, and B. Sauviac, "Single and dual photonic jets with tipped waveguides: An integral approach," IEEE Photonics Technology Letters, Vol. 24, No. 17, 1516-1518, 2012.
doi:10.1109/LPT.2012.2206377

11. Takakura, Y., S. Lecler, B. Ounnas, S. Robert, and B. Sauviac, "Boundary impedance operator to study tipped parallel plate waveguides," IEEE Photonics Technology Letters, Vol. 62, No. 11, 5599-5609, 2014.

12. Zelgowski, J., A. Abdurrochman, F. Mermet, P. Pfeiffer, J. Fontaine, and S. Lecler, "Photonic jet subwavelength etching using a shaped optical fiber tip," Opt. Lett., Vol. 41, No. 9, 2073-2076, 2016.
doi:10.1364/OL.41.002073

13. Ounnas, B., B. Sauviac, Y. Takakura, S. Lecler, B. Bayard, and S. Robert, "Single and dual photonic jets and corresponding backscattering enhancement with tipped waveguides: Direct observation at microwave frequencies," IEEE Photonics Technology Letters, Vol. 63, No. 12, 5612-5618, 2015.

14. Knop, K., "Photonic jet subwavelength etching using a shaped optical fiber tip," JOSA, Vol. 68, No. 9, 1206-1210, 1978.
doi:10.1364/JOSA.68.001206

15. Lalanne, P. and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," JOSA, Vol. 13, No. 4, 779-784, 1996.
doi:10.1364/JOSAA.13.000779

16. Granet, G. and B. Guizal, "Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization," JOSA, Vol. 13, No. 5, 1019-1023, 1996.
doi:10.1364/JOSAA.13.001019

17. Li, L., "Fourier modal method," Gratings: Theory and Numeric Applications, Evgeny Popov, Aix Marseille Université, 2014.

18. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," JOSA, Vol. 13, No. 9, 1870-1876, 1996.
doi:10.1364/JOSAA.13.001870

19. Granet, G., "Coordinate transformation methods," Gratings: Theory and Numeric Applications, Evgeny Popov, Aix Marseille Université, 2014.

20. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

21. Plumey, J. P., K. Edee, and G. Granet, "Modal expansion for the 2D Green’s function in a non-orthogonal coordinates system," Progress In Electromagnetics Research, Vol. 59, 101-112, 2006.
doi:10.2528/PIER05080701

22. Hyani, H., B. Sauviac, K. Edee, G. Granet, S. Robert, and B. Bayard, "Embout multi-guide pour la production de jet photonique appliqué á la détection dans des structures opaques," JCMM, France, 2018.