1. Gao, Y. and Q. Ai, "Hierarchical distributed coordination control of active distribution network with sparse communication in micro-grid networks," Automation of Electric Power System, Vol. 4, 019, 2018. Google Scholar
2. Geng, M., Y. Ding, Y. Wang, et al. "Micro-net-“Organic Cells” in the future energy internet system," Automation of Electric Power Systems, Vol. 41, No. 19, 1-11, 2017. Google Scholar
3. Han, Z.-X., Power System Analysis, 1993.
4. Raj, D. C. and D. N. Gaonkar, "Frequency and voltage droop control of parallel inverters in microgrid," 2016 IEEE 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), 407-411, 2016.
doi:10.1109/CIEC.2016.7513771 Google Scholar
5. Zhong, Q. C. and G. Weiss, "Synchronverters: Inverters that mimic synchronous generators," IEEE Transactions on Industrial Electronics, Vol. 58, No. 4, 1259-1267, 2011.
doi:10.1109/TIE.2010.2048839 Google Scholar
6. Natarajan, V. and G. Weiss, "Almost global asymptotic stability of a grid-connected synchronous generator,", arXiv preprint arXiv:1610.04858, 2016. Google Scholar
7. Natarajan, V. and G. Weiss, "Synchronverters with better stability due to virtual inductors, virtual capacitors and anti-windup," IEEE Transactions on Industrial Electronics, Vol. PP, No. 99, 1-1, 2017. Google Scholar
8. Li, D., Q. Zhu, S. Lin, et al. "A self-adaptive inertia and damping combination control of vsg to support frequency stability," IEEE Transactions on Energy Conversion, Vol. 32, No. 1, 397-398, 2017.
doi:10.1109/TEC.2016.2623982 Google Scholar
9. Zhong, Q. C., P. L. Nguyen, Z. Ma, et al. "Self-synchronized synchronverters: Inverters without a dedicated synchronization unit," IEEE Transactions on Power Electronics, Vol. 29, No. 2, 617-630, 2014.
doi:10.1109/TPEL.2013.2258684 Google Scholar
10. Wu, H., X. Ruan, D. Yang, et al. "Small-signal modeling and parameters design for virtual synchronous generators," IEEE Transactions on Industrial Electronics, Vol. 63, No. 7, 4292-4303, 2016.
doi:10.1109/TIE.2016.2543181 Google Scholar
11. Dong, S. and Y. C. Chen, "Adjusting synchronverter dynamic response speed via damping correction loop," IEEE Transactions on Energy Conversion, Vol. PP, No. 99, 1-1, 2017. Google Scholar
12. Qu, K., W. Li, T. Ye, et al. "Decoupled control strategy of LCL inverter based on state feedback," Transactions of China Electrotechnical Society, Vol. 31, No. 20, 130-138, 2016. Google Scholar
13. Peng, Q., H. Pan, Y. Liu, et al. "Design of double closed loop decoupling controller for LCL three phase grid-connected inverter," Journal of China Electrotechnical Society, Vol. 29, No. 4, 103-110, 2014. Google Scholar
14. Ye, Z. and X. Yan, "Analysis of power coupling characteristics of microgrid and decoupling control," Grid Technology, Vol. 40.3, 812-818, 2016. Google Scholar
15. Li, B., L. Zhou, X. Yu, et al. "New control scheme of power decoupling based on virtual synchronous generator," IEEE Power and Energy Conference at Illinois, 1-8, 2016. Google Scholar
16. Li, B., L. Zhou, X. Yu, et al. "Improved power decoupling control strategy based on virtual synchronous generator," Iet Power Electronics, Vol. 10, No. 4, 462-470, 2017.
doi:10.1049/iet-pel.2016.0608 Google Scholar
17. Li, W., J. Wang, H. Yang, et al. "Power dynamic coupling mechanism and synchronization frequency resonance suppression strategy of virtual synchronous generator," Proceeding of the CSEE, Vol. 37, No. 2, 381-390, 2017. Google Scholar
18. Akagi, H., H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press, New Jersey, 2007.
doi:10.1002/0470118938
19. Chen, X., X. Ruan, D. Yang, et al. "Step-by-step controller design of voltage closed-loop control for virtual synchronous generator," IEEE Energy Conversion Congress and Exposition, 3760-3765, 2015.
doi:10.1109/ECCE.2015.7310191 Google Scholar
20. Zhang, P., H. Zhao, H. Cai, et al. "Power decoupling strategy based on ‘virtual negative resistor’ for inverters in low-voltage microgrids," IET Power Electronics, Vol. 9, No. 5, 1037-1044, 2016.
doi:10.1049/iet-pel.2015.0137 Google Scholar
21. Wu, T., Z. Liu, J. Liu, et al. "A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids," IEEE Transactions on Power Electronics, Vol. 31, No. 8, 5587-5603, 2016.
doi:10.1109/TPEL.2015.2497972 Google Scholar
22. De Brabandere, K., B. Bolsens, D. K. J. Van, et al. "A voltage and frequency droop control method for parallel inverters," Pesc Record-IEEE Power Electronics Specialists Conference, 1107-1115, 2004. Google Scholar
23. Erickson, R. W. and D. Maksimovic, Fundamentals of Power Electronics, Springer Science & Business Media, 2007.
24. Hu, S., Principle of Automatic Control, 2001.
25. Li, Y., X. Ruan, D. Yang, et al. "Modeling, analysis and design for hybrid power systems with dual-input DC/DC converter," IEEE Energy Conversion Congress and Exposition, 2009. Ecce., 3203-3210, 2009. Google Scholar