Vol. 90
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-04
Theoretical and Experimental Investigation of Ferrite-Loaded Waveguide for Ferrimagnetism Characterization
By
Progress In Electromagnetics Research C, Vol. 90, 195-208, 2019
Abstract
This work proposes an approach to retrieve the ferrite's electromagnetic properties in a single compact configuration, simpler than the traditional measurement systems. The ferrite under test is fully inserted into a rectangular waveguide with a magnetic bias. The complex scattering parameters are theoretically analyzed under the consideration of modal effect at isotropy-anisotropy interfaces. Extraordinarily sharp Fano resonances are observed in the scattering spectra, originating from the multimode interference inside the magnetized ferrite. There is good agreement among theoretical, experimental, and full-wave simulation results. This model can be further utilized to simultaneously retrieve all ferrite properties, including permittivity (ε), saturation magnetization (4πMs), and magnetic linewidth (ΔH) from the measured scattering parameters, facilitating the designs and applications of ferrite devices.
Citation
Hsin-Yu Yao, Wei-Chen Chang, Li-Wen Chang, and Tsun-Hun Chang, "Theoretical and Experimental Investigation of Ferrite-Loaded Waveguide for Ferrimagnetism Characterization," Progress In Electromagnetics Research C, Vol. 90, 195-208, 2019.
doi:10.2528/PIERC18102602
References

1. Schloemann, E., "Advances in ferrite microwave materials and devices," J. Magn. Magn. Mater., Vol. 209, No. 1–3, 15-20, Feb. 2000.
doi:10.1016/S0304-8853(99)00635-6        Google Scholar

2. Capraro, S., J.-P. Chatelon, M. Le Berre, H. Joisten, T. Rouiller, B. Bayard, et al. "Barium ferrite thick films for microwave applications," J. Magn. Magn. Mater., Vol. 272, E1805-E1806, May 2004.
doi:10.1016/j.jmmm.2003.12.871        Google Scholar

3. Bayard, B., D. Vincent, C. R. Simovski, and G. Noyel, "Electromagnetic study of a ferrite coplanar isolator suitable for integration," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 7, 1809-1814, Jul. 9, 2003.
doi:10.1109/TMTT.2003.814312        Google Scholar

4. Pardavi-Horvath, M., "Microwave applications of soft ferrites," J. Magn. Magn. Mater., Vol. 215, 171-183, Jun. 2, 2000.        Google Scholar

5. Peng, B., H. Xu, H. Li, W. Zhang, Y. Wang, and W. Zhang, "Self-biased microstrip junction circulator based on barium ferrite thin films for monolithic microwave integrated circuits," IEEE Trans. Magn., Vol. 47, No. 6, 1674-1677, Feb. 17, 2011.
doi:10.1109/TMAG.2011.2116159        Google Scholar

6. Darques, M., J. De la Torre Medina, L. Piraux, L. Cagnon, and I. Huynen, "Microwave circulator based on ferromagnetic nanowires in an alumina template," Nanotechnology, Vol. 21, No. 14, 145208, Mar. 16, 2010.
doi:10.1088/0957-4484/21/14/145208        Google Scholar

7. Ustinov, A., G. Srinivasan, and B. Kalinikos, "Ferrite-ferroelectric hybrid wave phase shifters," J. Appl. Phys., Vol. 90, No. 3, 031913, Jan. 19, 2007.        Google Scholar

8. Geiler, A., S. Gillette, Y. Chen, J. Wang, Z. Chen, S. Yoon, et al. "Multiferroic heterostructure fringe field tuning of meander line microstrip ferrite phase shifter," J. Appl. Phys., Vol. 96, No. 5, 053508, Feb. 5, 2010.        Google Scholar

9. Morisako, A., T. Naka, K. Ito, A. Takizawa, M. Matsumoto, and Y.-K. Hong, "Properties of Baferrite/ AlN double layered films for perpendicular magnetic recording media," J. Magn. Magn. Mater., Vol. 242, 304-310, Apr. 2002.
doi:10.1016/S0304-8853(01)01230-6        Google Scholar

10. Cohn, S. and K. Kelly, "Microwave measurement of high-dielectric-constant materials," IEEE Trans. Microw. Theory Tech., Vol. 14, No. 9, 406-410, Sep. 1966.
doi:10.1109/TMTT.1966.1126288        Google Scholar

11. Zieba, A. and S. Foner, "Detection coil, sensitivity function, and sample geometry effects for vibrating sample magnetometers," Rev. Sci. Instrum., Vol. 53, No. 9, 1344-1354, Apr. 23, 1982.
doi:10.1063/1.1137182        Google Scholar

12. Krupka, J. and R. G. Geyer, "Complex permeability of demagnetized microwave ferrites near and above gyromagnetic resonance," IEEE Trans. Magn., Vol. 32, No. 3, 1924-1933, May 1996.
doi:10.1109/20.492888        Google Scholar

13. Green, J. J. and F. Sandy, "A catalog of low power loss parameters and high power thresholds for partially magnetized ferrites," IEEE Trans. Microw. Theory Tech., Vol. 22, No. 6, 645-651, Jun. 1974.
doi:10.1109/TMTT.1974.1128307        Google Scholar

14. Korolev, K. A., L. Subramanian, and M. N. Afsar, "Complex permittivity and permeability of strontium ferrites at millimeter waves," J. Appl. Phys., Vol. 99, No. 8, 08F504, Apr. 21, 2006.
doi:10.1063/1.2172233        Google Scholar

15. Kocharyan, K. N., M. Afsar, and I. I. Tkachov, "Millimeter-wave magnetooptics: New method for characterization of ferrites in the millimeter-wave range," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 12, 2636-2643, Dec. 1999.
doi:10.1109/22.809018        Google Scholar

16. Ghodgaonkar, D., V. Varadan, and V. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, Apr. 1990.
doi:10.1109/19.52520        Google Scholar

17. Korolev, K. A., S. Chen, and M. N. Afsar, "Complex magnetic permeability and dielectric permittivity of ferrites in millimeter waves," IEEE Trans. Magn., Vol. 44, No. 4, 435-437, Apr. 2008.
doi:10.1109/TMAG.2008.916033        Google Scholar

18. Catala-Civera, J. M., A. J. Canos, F. L. Penaranda-Foix, and E. de los Reyes Davo, "Accurate determination of the complex permittivity of materials with transmission reflection measurements in partially filled rectangular waveguides," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 1, 16-24, Jan. 2003.
doi:10.1109/TMTT.2002.806940        Google Scholar

19. Al-Moayed, N. N., M. N. Afsar, U. A. Khan, S. McCooey, and M. Obol, "Nano ferrites microwave complex permeability and permittivity measurements by T/R technique in waveguide," IEEE Trans. Magn., Vol. 44, No. 7, 1768-1772, Jun. 17, 2008.
doi:10.1109/TMAG.2008.920846        Google Scholar

20. Queffelec, P., M. Le Floc’h, and P. Gelin, "Nonreciprocal cell for the broadband measurement of tensorial permeability of magnetized ferrites: Direct problem," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 4, 390-397, Apr. 1999.
doi:10.1109/22.754870        Google Scholar

21. Queffelec, P., M. Le Floc’h, and P. Gelin, "New method for determining the permeability tensor of magnetized ferrites in a wide frequency range," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 8, 1344-1351, Aug. 2000.
doi:10.1109/22.859479        Google Scholar

22. O’brien, K. C., "Microwave properties of slabs of uniformly magnetized material filling the cross section of a rectangular waveguide operating in TENO modes," IEEE Trans. Microw. Theory Tech., Vol. 18, No. 7, 377-382, Jul. 1970.
doi:10.1109/TMTT.1970.1127246        Google Scholar

23. Okubo, K. and M. Tsutsumi, "Waveguide band rejection filter using yttrium iron garnet films," Electron. Commun. Jpn., Part 2: Electron., Vol. 74, No. 5, 40-48, 1991.
doi:10.1002/ecjb.4420740505        Google Scholar

24. Tsutsumi, M., H. Shimasaki, and T. Hattori, "Waveguide filters using yttrium iron garnet film," 1992 Asian Pacific Microwave Conference Proceedings, 183-186, 1992.
doi:10.1109/APMC.1992.672000        Google Scholar

25. Ueda, T. and M. Tsutsumi, "Left-handed transmission characteristics of rectangular waveguides periodically loaded with ferrite," IEEE Trans. Magn., Vol. 41, No. 10, 3532-3537, Oct. 2005.
doi:10.1109/TMAG.2005.854463        Google Scholar

26. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

27. Yao, H.-Y. and T.-H. Chang, "Effect of high-order modes on tunneling characteristics," Progress In Electromagnetics Research, Vol. 101, 291-306, 2010.
doi:10.2528/PIER09121603        Google Scholar

28. Yao, H.-Y., J.-Y. Jiang, Y.-S. Cheng, Z.-Y. Chen, T.-H. Her, and T.-H. Chang, "Modal analysis and efficient coupling of TE01 mode in small-core THz Bragg fibers," Opt. Express, Vol. 23, No. 21, 27266-27281, Oct. 2015.
doi:10.1364/OE.23.027266        Google Scholar

29. Weltner, W., Magnetic Atoms and Molecules, Courier Corporation, 1989.

30. Fuller, A. B., Ferrites at Microwave Frequencies, IET, 1987.
doi:10.1049/PBEW023E

31. Karagodsky, V. and C. J. Chang-Hasnain, "Physics of near-wavelength high contrast gratings," Opt. Express, Vol. 20, No. 10, 10888-10895, 2012.
doi:10.1364/OE.20.010888        Google Scholar

32. Karagodsky, V., F. G. Sedgwick, and C. J. Chang-Hasnain, "Theoretical analysis of subwavelength high contrast grating reflectors," Opt. Express, Vol. 18, No. 16, 16973-16988, 2010.
doi:10.1364/OE.18.016973        Google Scholar

33. Karagodsky, V., C. Chase, and C. J. Chang-Hasnain, "Matrix Fabry-Perot resonance mechanism in high-contrast gratings," Opt. Lett., Vol. 36, No. 9, 1704-1706, 2011.
doi:10.1364/OL.36.001704        Google Scholar