Vol. 90
2019-02-28
Evaluation and Minimization of Cramer-Rao Bound for Conformal Antenna Arrays with Directional Emitters for DOA-Estimation
By
Progress In Electromagnetics Research C, Vol. 90, 139-154, 2019
Abstract
The Cramer-Rao lower bound (CRLB) for calculating errors and accuracy of direction-of-arrival (DOA) estimation is discussed for a number of planar waves arriving on an antenna array. It is well known that the geometry of antenna arrays imposes restrictions on the performances of the direction-of-arrival estimation. In particular, the influence of the directivity factor of the individual antenna elements on the accuracy of the DOA estimation of the radio emission sources for circular (cylindrical), cubic and spherical antenna arrays consisting of the directional antenna elements is investigated. The directivity factor of antenna elements is changed within wide limits in order to determine the values at which the high accuracy of the direction-finding can be achieved. It is shown that further increasing the directivity factor of each antenna element makes the mean square error in the determination of the coordinates of the signals increase as well. The exact expression for the Cramer-Rao lower bound for the DOA-estimation variance calculation depending on the antenna directivity and the geometry is presented. The obtained exact equation shows the most important factors that the direction-of-arrival estimation accuracy is dependent on. A technique of obtaining antenna arrays with optimal directional elements locations is proposed. Those arrays allow increasing DOA estimation accuracy by several times.
Citation
Yuri Nechaev Ilia Peshkov Natalia Fortunova , "Evaluation and Minimization of Cramer-Rao Bound for Conformal Antenna Arrays with Directional Emitters for DOA-Estimation," Progress In Electromagnetics Research C, Vol. 90, 139-154, 2019.
doi:10.2528/PIERC18111802
http://www.jpier.org/PIERC/pier.php?paper=18111802
References

1. Chetan, R. D. and A. N. Jadhav, "Simulation study on DOA estimation using MUSIC algorithm," Intl. J. Tech. Eng. Sys., Vol. 2, No. 1, Mar. 2011.

2. Ikeda, K., J. Nagai, T. Fujita, H. Yamada, A. Hirata, and T. Ohira, "DOA estimation by using MUSIC algorithm with a 9-elements rectangular ESPAR antenna," Proc. of Intl. Symp. on Antennas and Propagat., 45-48, Aug. 2004.

3. Sun, C. and N. C. Karmakar, "Direction of arrival estimation based on a single port smart antenna using MUSIC algorithm with periodic signals," Intl. J. Signal Process., Vol. 1, No. 3, 153-162, 2010.

4. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

5. Belhoud, F. A., R. M. Shubair, and M. E. Al-Mualla, "Modelling and performance analysis of DOA estimation in adaptive signal processing arrays," Proc. IEEE Intl. Conf. on Electron., Circuits and Sys., 340-343, Dec. 2003.

6. Cadzow, J. A., "A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources," IEEE Trans. Acoust., Speech, Signal Process., Vol. 36, No. 7, 965-979, Jul. 1998.
doi:10.1109/29.1618

7. Abouda, A., H. M. El-Sallabi, and S. G. Haggman, "Impact of antenna array geometry on MIMO channel eigenvalues," Proc. IEEE Intl. Symp. on Personal, Indoor and Mobile Radio Comm., Vol. 1, 568-572, Sep. 2005.

8. Nechaev, Y. and I. Peshkov, "Building circular, octagonal, hexagonal and rectangular antenna arrays for direction-of-arrival via superresolutional method MUSIC," Radioengineering, No. 6, 137-142, 2016.

9. Wu, B., "Realization and simulation of DOA estimation using MUSIC algorithm with uniform circular arrays," The 4th Asia-Pacific Conf. on Environmental Electromagnetics, 908-912, 2006.

10. Nechaev, Yu. B. and I. V. Peshkov, "Evaluating Cramer-Rao Bound for 2D direction-finding via planar antenna arrays," Visn. NTUU KPI, Ser. Radioteh. Radioaparatobuduv., Vol. 67, 12-17, 2016.

11. Jackson, B. R., S. Rajan, B. J. Liao, and S. Wang, "Direction of arrival estimation using directive antennas in uniform circular arrays," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 736-747, 2015.
doi:10.1109/TAP.2014.2384044

12. Mohammadi, S., A. Ghani, and S. H. Sedighy, "Direction of arrival estimation in conformal microstrip patch array antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 511-515, 2018.
doi:10.1109/TAP.2017.2772085

13. Gazzah, H., J.-P. Delmas, and S. M. Jesus, "Direction-finding arrays of directional sensors for randomly located sources," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, 1995-2003, 2016.
doi:10.1109/TAES.2016.150655

14. Gazzah, H. and S. Marcos, "Directive antenna arrays for 3D source localization," 4th IEEE Workshop on Signal Processing Advances in Wireless Communications, 2003. SPAWC 2003, 619-623, 2003.
doi:10.1109/SPAWC.2003.1319035

15. Chan, A. Y. J. and J. Litva, "MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array," IEE Proceedings — Radar, Sonar and Navigation, Vol. 142, No. 3, 105-114, 2018.
doi:10.1049/ip-rsn:19951756

16. Nechaev, Yu. B., E. Algazinov, and I. Peshkov, "Estimation of the cramer-rao bound for radio direction-finding on the azimuth and elevation of the cylindical antenna arrays," 41st International Conference on Telecommunications and Signal Processing (TSP), DOI: 10.1109/TSP.2018.8441419, 2018.

17. Moriya, H., et al., "Novel 3-D array configuration based on CRLB formulation for high-resolution DOA estimation," Proceedings of ISAP 2012, 1140-1143, Nagoya, Japan, 2012.