1. Zhang, L., "Three-dimensional power segmented tracking for adaptive digital pre-distortion," IEICE Electron. Express, Vol. 13, 1, 2016, doi: 10.1587/elex.13.20160711. Google Scholar
2. Mkadem, F., et al. "Multi band complexity reduced generalized memory polynomial poweramplifier digital predistortion," IEEE Trans. Microw. Theory Techn., Vol. 64, 1763, 2016, doi: 10.1109/TMTT.2016.2561279.
doi:10.1109/TMTT.2016.2561279 Google Scholar
3. Hammi, O., et al. "Multi-basis weighted memory polynomial for RF power amplifiers behavioral modeling," IEEE MTT-S International Conf., Vol. 1, 2016, doi: 10.1109/IEEE-IWS.2016.7585475. Google Scholar
4. Ba, S. N., K. Waheed, and G. T. Zhou, "Efficient lookup table-based adaptive baseband predistortion architecture for memoryless nonlinearity," EURASIP Journal on Advances in Signal Processing, 379249, 2010, doi: 10.1155/2010/379249.
doi:10.1155/2010/379249 Google Scholar
5. Chen, H. H., et al. "Joint polynomial and look-up-table predistortion power amplifier linearization," IEEE Trans. Circuit System, Vol. 53, 612, 2006, doi: 10.1109/TCSII.2006.877278.
doi:10.1109/TCSII.2006.877278 Google Scholar
6. Yang, Z., et al. "PA linearization using multi-stage look-up-table predistorter with optimal linear weighted delay," IEEE International Conf. Signal Process., Vol. 47, 2012, doi: 10.1109/ICoSP.2012.6491529. Google Scholar
7. Kim, J., et al. "Digital predistortion of wideband signals based on power amplifier model with memory," Electronics Letters, Vol. 37, 1417, 2001, doi: 10.1049/el:20010940.
doi:10.1049/el:20010940 Google Scholar
8. Morgan, D. R., et al. "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Transactions on Signal Processing, Vol. 54, 3852, 2006, doi: 10.1109/TSP.2006.879264.
doi:10.1109/TSP.2006.879264 Google Scholar
9. Yao, S., et al. "A recursive least squares algorithm with reduced complexity for digital predistortion linearization," IEEE International Conf. Signal Process., 4736, 2013, doi: 10.1109/ICASSP.2013.6638559. Google Scholar
10. Mandic, D. P., "A generalized normalized gradient descent algorithm," IEEE Signal Processing Letters, Vol. 11, 115, 2004, doi: 10.1109/LSP.2003.821649.
doi:10.1109/LSP.2003.821649 Google Scholar
11. Liu, Y. J., et al. "A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers," IEEE Trans. on Industrial Electronics, Vol. 61, 2389, 2014, doi: 10.1109/TIE.2013.2270217.
doi:10.1109/TIE.2013.2270217 Google Scholar
12. Dawar, N., T. Sharma, R. Darraji, and F. M. Ghannouchi, "Linearisation of radio frequency power amplifiers exhibiting memory effects using direct learning-based adaptive digital predistoriton," IET Communications, Vol. 10, No. 8, 950-954, May 19, 2016, doi: 10.1049/iet-com.2015.1048.
doi:10.1049/iet-com.2015.1048 Google Scholar
13. Carusone, A. C., "An equalizer adaptation algorithm to reduce jitter in binary receivers," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, No. 9, 807-811, Sep. 2006, doi: 10.1109/TCSII.2006.881161.
doi:10.1109/TCSII.2006.881161 Google Scholar
14. Akhtar, M. T., M. Abe, and M. Kawamata, "A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems," IEEE Transactions on Audio, Speech, and Language Processing, Vol. 14, No. 2, 720-726, Mar. 2006, doi: 10.1109/TSA.2005.855829.
doi:10.1109/TSA.2005.855829 Google Scholar
15. Mitra, A., M. Chakraborty, and H. Sakai, "A block floating-point treatment to the LMS algorithm: Efficient realization and a roundoff error analysis," IEEE Transactions on Signal Processing, Vol. 53, No. 12, 4536-4544, Dec. 2005, doi: 10.1109/TSP.2005.859342.
doi:10.1109/TSP.2005.859342 Google Scholar