1. Tang, L.-B., D.-J. Li, Y.-R. Wu, et al., "High resolution SAR imaging of moving ship targets at sea," Journal of Electronics & Information Technology, Vol. 28, No. 4, 624-627, 2006. Google Scholar
2. Renga, A. and A. Moccia, "Use of doppler parameters for ship velocity computation in SAR images," IEEE Transactions on Geo-Science and Remote Sensing, Vol. 54, No. 7, 3995-4011, 2016.
doi:10.1109/TGRS.2016.2533023 Google Scholar
3. Ouchi, K. and S.-I. Hwang, "Improvement of ship detection accuracy by SAR multi-look crosscorrelation technique using adaptive CFAR," IEEE International Geoscience & Remote Sensing Symposium, IEEE, 3716-3719, 2010. Google Scholar
4. Jansen, R. W., R. G. Raj, L. Rosenberg, and M. A. Sletten, "Practical multichannel SAR imaging in the maritime environment," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 7, 4025-4036, 2018.
doi:10.1109/TGRS.2018.2820911 Google Scholar
5. Li, G., J. Xu, Y.-N. Peng, and X.-G. Xia, "Velocity layover solution in VSAR image," 2006 CIE International Conference on Radar, 16-19, Shanghai, China, 2006. Google Scholar
6. Friedlander, B. and B. Porat, "VSAR: A high resolution radar system for detection of moving targets," IEE Proceedings-Radar, Sonar and Navigation, Vol. 144, No. 4, 205-218, Aug. 1997.
doi:10.1049/ip-rsn:19971309 Google Scholar
7. Lombardini, F., F. Bordoni, F. Gini, et al. "Multibaseline ATI-SAR for robust ocean surface velocity estimation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 2, 417-433, 2004.
doi:10.1109/TAES.2004.1309994 Google Scholar
8. Wang, G., X.-G. Xia, and V. C. Chen, "Multi-frequency VSAR imaging of moving targets," Radar Processing, Technology and Applications IV, 159-169, Denver, CO, United States, September 1999. Google Scholar
9. Gang, L., X. Jia, Y.-N. Peng, and X.-G. Xia, "Location and imaging of moving targets using nonuniform linear antenna array SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 1214-1220, 2007.
doi:10.1109/TAES.2007.4383613 Google Scholar
10. Sletten, M., S. Menk, J. Toporkov, et al. "The NRL multi aperture SAR system," 2015 IEEE Radar Conference, 0192-0197, Arlington, VA, USA, May 2015. Google Scholar
11. Sletten, M. A., L. Rosenberg, S. Menk, et al. "Maritime signature correction with the NRL multichannel SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, 6783-6790, 2016.
doi:10.1109/TGRS.2016.2590958 Google Scholar
12. Li, X. and X.-G. Xia, "Location and imaging of elevated moving target using multi-frequency velocity SAR with cross-track interferometry," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 2, 1203-1211, 2011.
doi:10.1109/TAES.2011.5751252 Google Scholar
13. Li, J.-J., S.-Y. Wang, and W.-L. Hu, "Adaptive cell average CFAR detection based on multi-clutter distribution model," Journal of Air Force Radar Academy, Vol. 19, No. 3, 4-7, 2005. Google Scholar
14. Xiao, J., X.-C. Hu, H. Zhang, et al. "Estimation of the doppler frequency modulation ratio based on minimum entropy criteria for highly squinted SAR," Modern Radar, Vol. 35, No. 1, 46-54, 2013. Google Scholar
15. Finn, H. M. and R. S. Johnson, "Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates," Rca Review, Vol. 29, No. 9, 414-464, 1968. Google Scholar
16. Xiong, Y.-F., Z.-G. Shi, J. Guo, et al. "Sea surface modeling based on the spectrum of ocean waves modeling and the FFT," Journal of Chongqing University of Technology (Natural Science), Vol. 28, No. 4, 77-82, 2014. Google Scholar
17. Donelan, M. A. and W. J. Pierson, "Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry," Journal of Geophysical Research Oceans, Vol. 92, No. C5, 4971-5029, 1987.
doi:10.1029/JC092iC05p04971 Google Scholar
18. Durden, S. and J. Vesecky, "A physical radar cross-section model for a wind-driven sea with swell," IEEE Journal of Oceanic Engineering, Vol. 10, No. 4, 445-451, 1985.
doi:10.1109/JOE.1985.1145133 Google Scholar