Vol. 92
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-04-19
Electromagnetic Filters Based on a Single Negative Photonic Comb-Like Structure
By
Progress In Electromagnetics Research C, Vol. 92, 41-56, 2019
Abstract
This work describes a theoretical study of filters using a defect in one-dimensional photonic comb-like structure. This photonic comb-like structure is constituted by finite or infinite segments which have negative permeability and grafted in each site by a finite number of lateral branches (play the role of the resonators), which consists of a negative permittivity. Numerical results exhibit the permissible bands which are separated by gaps (forbidden band). These gaps originate not only from the periodicity of the system but also from the resonance states of the grafted lateral branches. We study the effect of the presence of a resonator defect on the transmission behavior, phase, and phase time. The electromagnetic band structure shows that there is a defect mode in the gap. The transmission rate and the reduced frequency of this mode are related to the variation of defect length. Similarly, we calculate, for the first time, the quality factor evolution of this defect mode when the defect length varies. This structure can be used as a new optical filter in the microwave range with a high factor of quality and of transmission.
Citation
Youssef Ben-Ali, Zakaria Tahri, and Driss Bria, "Electromagnetic Filters Based on a Single Negative Photonic Comb-Like Structure," Progress In Electromagnetics Research C, Vol. 92, 41-56, 2019.
doi:10.2528/PIERC18122001
References

1. Zhou, H., C. Wang, and H. Peng, "A novel double-incidence and multi-band left-handed metamaterials composed of double Z-shaped structure," Journal of Materials Science: Materials in Electronics, Vol. 27, 2534-2544, 2016.        Google Scholar

2. Bi, K., J. Zhou, X. Liu, C. Lan, and H. Zhao, "Multi-band negative refractive index in ferrite-based metamaterials," Progress In Electromagnetic Research, Vol. 140, 457-469, 2013.        Google Scholar

3. Li, J., F.-Q. Yang, and J. F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetic Research, Vol. 116, 395-408, 2011.        Google Scholar

4. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetic Research, Vol. 129, 33-49, 2012.        Google Scholar

5. Zhu, W., I. D. Rukhlenko, and M. Premaratne, "Maneuvering propagation of surface plasmon polaritons using complementary medium inserts," IEEE Photonics Journal, Vol. 4, No. 3, 741-747, 2012.        Google Scholar

6. Zhu, J. H., S. Y. Wei, N. Haldolaarachchige, J. He, D. P. Young, and Z. H. Guo, "Very large magnetoresistive graphene disk with negative permittivity," Nanoscale, Vol. 4, 152-156, 2012.        Google Scholar

7. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetic Research M, Vol. 25, 239-253, 2012.        Google Scholar

8. Zeng, R., Y. Yang, and S. Zhu, "Casimir force between anisotropic single-negative metamaterials," Physical Review A, Vol. 87, 063823-063829, 2013.        Google Scholar

9. Xu, H. X., G. M. Wang, M. Q. Qi, and H. Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Optics Express, Vol. 20, 21968-21976, 2012.        Google Scholar

10. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Transactions on Antennas and Propagation, Vol. 51, 2558-2571, 2003.        Google Scholar

11. Dhouibi, A., S. N. Burokur, A. Lustrac, and A. Priou, "Comparison of compact electric-LC resonators for negative permittivity metamaterials," Microwave and Optical Technology Letters, Vol. 54, 2287-2295, 2012.        Google Scholar

12. Sun, K., P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, R. Fan, D. Cao, and Z. Guo, "Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity," Polymer, Vol. 125, 50-57, 2017.        Google Scholar

13. Naqui, J. and F. Martin, "Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines," IEEE Sensors Journal, Vol. 14, No. 4, 939-940, 2014.        Google Scholar

14. Rawat, V., V. Nadkarni, and S. N. Kale, "Band flex fuel sensor using electrical metamaterialdevice," Applied Physics A, Vol. 123, 75-78, 2017.        Google Scholar

15. Khan, O. M., Z. U. Islam, Q. U. Islam, and F. A. Bhatti, "Multiband high-gain printed yagi array using square spiral ring metamaterial structures for S-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1100-1103, 2014.        Google Scholar

16. Xu, X., Y. Li, and X. Miao, "Robust waveguide against surface perturbations due to band inversion in two kinds of single-negative metamaterials," Europhysics Letters, Vol. 116, 44001-44007, 2016.        Google Scholar

17. Jiang, H., H. Chen, and Y. E. Zhang, "Properties of one-dimensional photonic crystals containing single-negative materials," Physics Letters E, Vol. 69, 066607-066612, 2004.        Google Scholar

18. Wang, L.-G., H. Chen, and S. Y. Zhu, "Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials," Physical Review B, Vol. 70, 245102-245107, 2004.        Google Scholar

19. Mackay, T. G., "Towards metamaterials with giant dielectric anisotropy via homogenization: An analytical study," Photonics and Nanostructures — Fundamentals and Applications, Vol. 13, 8-19, 2015.        Google Scholar

20. Mikhaylovskiy, R. V., E. Hendry, and V. V. Kruglyak, "Negative permeability due to exchange spin-wave resonances in thin magnetic films with surface pinning," Physical Review, Vol. 82, 195446-195455, 2010.        Google Scholar

21. Thibaudau, P. and J. Tranchida, "Frequency-dependent effective permeability tensor of unsaturated polycrystalline ferrites," Journal of Physics: Applied Physics, Vol. 118, 053901-053901, 2015.        Google Scholar

22. Thapaa, K. B., P. C. Pandey, P. P. Singhc, and S. P. Ojha, "Tunable characteristics of one dimensional magnetic photonic crystal composed with single-negative materials," Optik, Vol. 124, 6631-6635, 2013.        Google Scholar

23. Marathe, D. and K. Kulat, "A compact triple-band negative permittivity metamaterial for C, X-band applications," International Journal of Antennas and Propagation, Vol. 2017, 1-13, 2017.        Google Scholar

24. Faruque, I. S. S., M. R. Iqbal, and M. T. Islam, "A New SNG metamaterial for S-band microwave applications," Journal of Electrical & Electronics Engineering, Vol. 7, 13-16, 2014.        Google Scholar

25. Vasseur, J. O., P. A. Deymier, L. Dolorzynski, B. Djafari-Rouhani, and A. Akjouj, "Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structures," Physical Review B, Vol. 55, 10434-10442, 1997.        Google Scholar

26. Srivastava, S. K. and S. P. Ojha, "Enlarged photonic band gaps in one-dimensional magnetic star waveguide structure," Progress In Electromagnetic Research M, Vol. 9, 21-34, 2009.        Google Scholar

27. Ben-Ali, Y., Z. Tahri, A. Ouariach, and D. Bria, "Double frequency filtering by photonic comblike," IEEE Xplore, 1-6, 2019.        Google Scholar

28. Vasseur, J. O., P. A. Deymier, L. Dolorzynski, B. Djafari-Rouhani, and A. Akjouj, "Defect modes in one-dimensional comblike photonic waveguides," Physical Review B, 13446-13452, 1999.        Google Scholar

29. Cocoletzi, G. H., L. Dobrzynski, B. Djafari-Rouhani, H. Al-Wahsh, and D. Bria, "Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made up of dissipative negative-phase-velocity materials," Journal of Physics: Condensed Matter, Vol. 18, 3683-3690, 2006.        Google Scholar

30. Yin, C. P. and H. Z.Wang, "Narrow transmission bands of quasi-1D comb-like photonic waveguides containing negative index materials," Physics Letters A, Vol. 373, 1093-1096, 2009.        Google Scholar

31. Weng, Y., Z. G. Wang, and H. Chen, "Band structure of comb-like photonic crystals containing meta-materials," Optics Communications, Vol. 277, 80-83, 2007.        Google Scholar

32. Zhang, L., Z. Wang, H. Chen, H. Li, and Y. Zhang, "Experimental study of quasi-one-dimensional comb-like photonic crystals containing left-handed material," Optics Communications, Vol. 281, 3681-3685, 2008.        Google Scholar

33. Tan, W., Y. Sun, Z. G. Wang, and H. Chen, "Propagation of photons in metallic chain through side-branch resonators," Journal of Physics D: Applied Physics, Vol. 44, 335101-335101, 2011.        Google Scholar

34. Tan, W., Z. Wang, and H. Chen, "Complete tunning of light through mu-negative media," Progress In Electromagnetic Research M, Vol. 8, 27-37, 2009.        Google Scholar

35. Ben-Ali, Y., Z. Tahri, F. Falyouni, and D. Bria, "Study about a filter using a resonator defect in a one-dimensional photonic comb containing a left-hand material," Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, ICEERE, Saidia, 2018.        Google Scholar

36. Fang, W., Y. Z. Cheng, X. Wang, Y. N. Zhang, Y. Nie, and R. Z. Gong, "Narrow band filter at 1550 nm based on quasi-one-dimensional photonic crystal with a mirror-symmetric heterostructure," Materials, Vol. 11, 1099-1108, 2018.        Google Scholar

37. Wang, F., Y. Z. Cheng, X. Wang, D. Qi, H. Luo, and R. Z. Gong, "Effective modulation of the photonic band gap based on Ge/ZnSone dimensional photonic crystal at the infrared band," Optical Materials, Vol. 75, 373-378, 2018.        Google Scholar

38. Vasseur, J. O., P. A. Deymier, L. Dolorzynski, B. Djafari-Rouhani, and A. Akjouj, "Defect modes in one-dimensional comblike photonic waveguides," Physical Review, Vol. 59, 13446-13452, 1999.        Google Scholar

39. Ben-Ali, Y., Z. Tahri, A. Bouzidi, D. Bria, A. Khettabi, and A. Nougaoui, "Propagation of electromagnetic waves in a one-dimensional photonic crystal containing two defects," Journal of Materials and Environmental Sciences, Vol. 8, 870-876, 2017.        Google Scholar