1. Zangwill, A., Modern Electrodynamics, Cambridge University Press, 2013.
2. Reitz, J. R., F. J. Milford, and R. W. Christy, Foundations of Electromagnetic, Addison-Wesley, Wilmington, 1996.
3. Griffiths, D. J., Introduction to Electrodynamics, Pearson, Harlow, 2014.
4. Lemarquand, V. and G. Lemarquand, "Passive permanent magnet bearings for rotating shaft: Analytical calculation," Magnetic Bearings, Theory and Applications, 85-116, Sciyo Published book, October 2010. Google Scholar
5. Akoun, G. and J. P. Yonnet, "3D analytical calculation of the forces exerted between two cuboidal magnets," IEEE Transactions on Magnetics, Vol. 20, No. 5, 1962-1964, 1984.
doi:10.1109/TMAG.1984.1063554 Google Scholar
6. Vokoun, D., M. Beleggia, L. Heller, and P. Sittner, "Magnetostatic interactions and forces between cylindrical permanent magnets," Journal of Magnetism and Magnetic Materials, Vol. 321, No. 22, 3758-3763, November 2009.
doi:10.1016/j.jmmm.2009.07.030 Google Scholar
7. Vokoun, D., G. Tomassetti, M. Beleggia, and I. Stachiv, "Magnetic forces between arrays of cylindrical permanent magnets," Journal of Magnetism and Magnetic Materials, Vol. 323, No. 1, 55-60, January 2011.
doi:10.1016/j.jmmm.2010.08.029 Google Scholar
8. Vokoun, D. and M. Beleggia, "Forces between arrays of permanent magnets of basic geometric shapes," Journal of Magnetism and Magnetic Materials, Vol. 350, 174-178, January 2014.
doi:10.1016/j.jmmm.2013.09.023 Google Scholar
9. Ravaud, R., G. Lemarquand, S. Babic, V. Lemarquand, and C. Akeyel, "Cylindrical magnets and coils: Fields, forces and inductances," IEEE Transactions on Magnetics, Vol. 46, 3585-3590, 2010.
doi:10.1109/TMAG.2010.2049026 Google Scholar
10. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Transactions on Magnetics, Vol. 45, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088 Google Scholar
11. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Transactions on Magnetics, Vol. 45, 3334-3342, 2009.
doi:10.1109/TMAG.2009.2025315 Google Scholar
12. MacLatchy, C. S., P. Backman, and L. Bogan, "A quantitative magnetic braking experiment," American Journal of Physics, Vol. 61, No. 12, 1096-1101, 1993.
doi:10.1119/1.17356 Google Scholar
13. Hossein Partovi, M. and E. J. Morris, "Eddy current damping of a magnet moving through a pipe," Canadian Journal of Physics, Vol. 84, 253-274, 2006.
doi:10.1139/p06-065 Google Scholar
14. Agashe, J. S. and D. P. Arnold, "Analytical force calculations and scaling effects for cylindrical and cuboidal micro-magnets," Intermag. Conf., San Diego, CA, May 2006. Google Scholar
15. Furlani, E. P., S. Reznik, and W. Jansen, "A three-dimensional field solution for bipolar cylinders," IEEE Transactions on Magnetics, Vol. 30, No. 5, 2916-2919, IEEE, September 1994.
doi:10.1109/20.312547 Google Scholar
16. Furlani, E. P., "Analytical analysis of magnetically coupled multipole cylinders," Journal of Physics D: Applied Physics, Vol. 33, 28-33, 2000.
doi:10.1088/0022-3727/33/1/305 Google Scholar
17. Furlani, E. P., S. Reznik, and A. Kroll, "Journal of Physics D: Applied Physics," IEEE Transactions on Magnetics, Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587 Google Scholar
18. Ravaud, R. G., V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Transactions on Magnetics, Vol. 44, No. 8, 1982-1989, August 2008.
doi:10.1109/TMAG.2008.923096 Google Scholar
19. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102 Google Scholar
20. Rakotoarison, H., J. Yonnet, and B. Delinchant, "Using Coulombian approach for modelling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Transactions on Magnetics, Vol. 43, 1261-1264, April 2007. Google Scholar
21. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial Magnetization," IEEE Transactions on Magnetics, Vol. 45, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088 Google Scholar
22. Robertson, W., B. Cazzolato, and A. Zander, "A simplified force equation for coaxial cylindrical magnets and thin coils," IEEE Transactions on Magnetics, Vol. 47, 2045-2049, 2011.
doi:10.1109/TMAG.2011.2129524 Google Scholar
23. Rovers, J., J. Jansen, J. Compter, and E. Lomonova, "Analysis method of the dynamic force and torque distribution in the magnet array of a commutated magnetically levitated planar actuator," IEEE Transactions on Industrial Electronics, Vol. 59, No. 5, 2157-2166, May 2012.
doi:10.1109/TIE.2011.2146222 Google Scholar
24. Allag, H., J.-P. Yonnet, M. Fassenet, and M. E. H. Latrech, "3D analytical calculation of interactions between perpendicularly magnetized magnets — Application to any magnetization direction," Sensors Letters, Vol. 7, No. 3, 1-6, June 2009.
doi:10.1166/sl.2009.1094 Google Scholar
25. Allag, H. and J.-P. Yonnet, "3-D analytical calculation of the torque and force exerted between two cuboidal magnets," IEEE Transactions on Magnetics, Vol. 45, No. 10, 3969-3972, October 2009.
doi:10.1109/TMAG.2009.2025047 Google Scholar
26. Yonnet, J. P., H. Allag, and M. E. H. Latrech, "2D and 3D analytical calculations of magnet interactions," Proc. MmdE Conf., Bucharest, June 15–16, 2008. Google Scholar
27. Xu, F., X. Xu, Z. Li, and L. Chu, "Numerical calculation of the magnetic field and force in cylindrical single-axis," IEEE Transactions on Magnetics, Vol. 50, 1-6, 2014.
doi:10.1109/TMAG.2014.2329456 Google Scholar
28. Wang, Z. and Y. Ren, "Magnetic force and torque calculation between circular coils with nonparallel axes," IEEE Transactions on Applied Superconductivity, Vol. 24, No. 4, 4901505, 2014. Google Scholar