1. LeVeque, R. J., "Large time step shock-capturing techniques for scalar conservation laws," SIAM Journal on Numerical Analysis, Vol. 19, No. 6, 1091-1109, 1982, doi: 10.1137/0719080.
doi:10.1137/0719080 Google Scholar
2. LeVeque, R. J., "Some preliminary results using a large time step generalization of the Godunov method," Numerical Methods for the Euler Equations of Fluid Dynamics, edited by F. Angrand et al., 32–47, SIAM, Philadelphia, 1985. Google Scholar
3. LeVeque, R. J., "A large time step generalization of Godunov’s method for system of conservation laws," SIAM Journal on Numerical Analysis, Vol. 22, No. 6, 1051-1073, 1985, doi: 10.1137/0722063.
doi:10.1137/0722063 Google Scholar
4. Qian, Z. and C. Lee, "A class of large time step Godunov schemes for hyperbolic conversation laws and applications," Journal of Computational Physics, Vol. 230, 7418-7440, 2011, doi: 10.1016/j.jcp.2011.06.008.
doi:10.1016/j.jcp.2011.06.008 Google Scholar
5. Guinot, V., "The time-line interpolation method for large-time-step Godunov-type scheme," Journal Computational Physics, Vol. 177, 394-417, 2002, doi: 10.1006/jcph.2002.7013.
doi:10.1006/jcph.2002.7013 Google Scholar
6. Murillo, J., P. Garcia-Navarro, P. Brufau, and J. Burguete, "Extension of an explicit finite volume method tp large time steps (CFL > 1): Application to shallow water flows," Int. J. Numer. Meth. Fluids, Vol. 50, 63-102, 2006, doi: 10.1002/fld.1036.
doi:10.1002/fld.1036 Google Scholar
7. Morales-Hernandez, M., P. Garcia-Navarro, and J. Murillo, "A large time step 1D upwind explicit scheme (CFL > 1): Application to shallow water equations," Journal of Computational Physics, Vol. 231, 6532-6557, 2012, doi: 10.1016/j.jcp.2012.06.017.
doi:10.1016/j.jcp.2012.06.017 Google Scholar
8. Morales-Hernandez, M., M. E. Hubbard, and P. Garcia-Navarro, "A 2D extension of a large time step explicit scheme (CFL > 1) for unsteady problems with wet/dry boundaries," Journal of Computational Physics, Vol. 263, 303-327, 2014, doi: 10.1016/j.jcp.2014.01.019.
doi:10.1016/j.jcp.2014.01.019 Google Scholar
9. Xu, R., D. Zhong, B. Wu, X. Fu, and R. Miao, "A large time step Godunov scheme for free-surface shallow water equations," Chinese Science Bulletin, Vol. 59, 2534-2540, 2014, doi: 10.1007/s11434-014-0374-7.
doi:10.1007/s11434-014-0374-7 Google Scholar
10. Makwana, N. N. and A. Chatterjee, "Computing with large time steps in time-domain electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 37, No. 17, 2182-2194, 2018, doi: 10.1080/09205071.2018.1500314.
doi:10.1080/09205071.2018.1500314 Google Scholar
11. LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
doi:10.1017/CBO9780511791253
12. LeVeque, R. J., "Convergence of a large time step generalization of Godunov’s method for conservation laws," Communication on Pure and Applied Mathematics, Vol. 37, 463-477, 1984, doi: 10.1002/cpa.3160370405.
doi:10.1002/cpa.3160370405 Google Scholar
13. Luebbers, R. J., K. S. Kunz, and K. A. Chamberlin, "An interactive demonstration of electromagnetic wave propagation using time domain finite differences," IEEE Transactions on Education, Vol. 33, No. 1, 66-68, 1990, doi: 10.1109/13.53628.
doi:10.1109/13.53628 Google Scholar
14. Young, J. L., R. O. Nelson, and D. V. Gaitonde, "A detailed examination of the finite-volume time-domain method for Maxwell’s equations," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 6, 765-766, 2000, doi: 10.1163/156939300X01490.
doi:10.1163/156939300X01490 Google Scholar