Vol. 80
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-03
Computing with Large Time Steps for Electromagnetic Wave Propagation in Multilayered Homogeneous Media
By
Progress In Electromagnetics Research M, Vol. 80, 45-56, 2019
Abstract
We present an extension of Large Time Step (LTS) method to electromagnetic wave propagation involving multilayered homogeneous media. The LTS method proposed by LeVeque is an extension of Godunov's method for the numerical solution of hyperbolic conservation laws. In this method, very large time steps are allowed by an increase in the numerical domain of dependence compared to conventional explicit methods constrained by the Courant-Friedrichs-Lewy stability criteria. This can lead to additional complexities when being applied to multilayered homogeneous media due to presence of material interfaces. Appropriate treatment of material interface boundaries is proposed in the present work in the context of finite volume time-domain method with LTS. Numerical examples are presented involving solution of time-domain Maxwell's equations in a layered dielectric medium using LTS approach.
Citation
Nikitabahen Navinchandra Makwana, and Avijit Chatterjee, "Computing with Large Time Steps for Electromagnetic Wave Propagation in Multilayered Homogeneous Media," Progress In Electromagnetics Research M, Vol. 80, 45-56, 2019.
doi:10.2528/PIERM19011402
References

1. LeVeque, R. J., "Large time step shock-capturing techniques for scalar conservation laws," SIAM Journal on Numerical Analysis, Vol. 19, No. 6, 1091-1109, 1982, doi: 10.1137/0719080.
doi:10.1137/0719080

2. LeVeque, R. J., "Some preliminary results using a large time step generalization of the Godunov method," Numerical Methods for the Euler Equations of Fluid Dynamics, edited by F. Angrand et al., 32–47, SIAM, Philadelphia, 1985.

3. LeVeque, R. J., "A large time step generalization of Godunov’s method for system of conservation laws," SIAM Journal on Numerical Analysis, Vol. 22, No. 6, 1051-1073, 1985, doi: 10.1137/0722063.
doi:10.1137/0722063

4. Qian, Z. and C. Lee, "A class of large time step Godunov schemes for hyperbolic conversation laws and applications," Journal of Computational Physics, Vol. 230, 7418-7440, 2011, doi: 10.1016/j.jcp.2011.06.008.
doi:10.1016/j.jcp.2011.06.008

5. Guinot, V., "The time-line interpolation method for large-time-step Godunov-type scheme," Journal Computational Physics, Vol. 177, 394-417, 2002, doi: 10.1006/jcph.2002.7013.
doi:10.1006/jcph.2002.7013

6. Murillo, J., P. Garcia-Navarro, P. Brufau, and J. Burguete, "Extension of an explicit finite volume method tp large time steps (CFL > 1): Application to shallow water flows," Int. J. Numer. Meth. Fluids, Vol. 50, 63-102, 2006, doi: 10.1002/fld.1036.
doi:10.1002/fld.1036

7. Morales-Hernandez, M., P. Garcia-Navarro, and J. Murillo, "A large time step 1D upwind explicit scheme (CFL > 1): Application to shallow water equations," Journal of Computational Physics, Vol. 231, 6532-6557, 2012, doi: 10.1016/j.jcp.2012.06.017.
doi:10.1016/j.jcp.2012.06.017

8. Morales-Hernandez, M., M. E. Hubbard, and P. Garcia-Navarro, "A 2D extension of a large time step explicit scheme (CFL > 1) for unsteady problems with wet/dry boundaries," Journal of Computational Physics, Vol. 263, 303-327, 2014, doi: 10.1016/j.jcp.2014.01.019.
doi:10.1016/j.jcp.2014.01.019

9. Xu, R., D. Zhong, B. Wu, X. Fu, and R. Miao, "A large time step Godunov scheme for free-surface shallow water equations," Chinese Science Bulletin, Vol. 59, 2534-2540, 2014, doi: 10.1007/s11434-014-0374-7.
doi:10.1007/s11434-014-0374-7

10. Makwana, N. N. and A. Chatterjee, "Computing with large time steps in time-domain electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 37, No. 17, 2182-2194, 2018, doi: 10.1080/09205071.2018.1500314.
doi:10.1080/09205071.2018.1500314

11. LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002.
doi:10.1017/CBO9780511791253

12. LeVeque, R. J., "Convergence of a large time step generalization of Godunov’s method for conservation laws," Communication on Pure and Applied Mathematics, Vol. 37, 463-477, 1984, doi: 10.1002/cpa.3160370405.
doi:10.1002/cpa.3160370405

13. Luebbers, R. J., K. S. Kunz, and K. A. Chamberlin, "An interactive demonstration of electromagnetic wave propagation using time domain finite differences," IEEE Transactions on Education, Vol. 33, No. 1, 66-68, 1990, doi: 10.1109/13.53628.
doi:10.1109/13.53628

14. Young, J. L., R. O. Nelson, and D. V. Gaitonde, "A detailed examination of the finite-volume time-domain method for Maxwell’s equations," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 6, 765-766, 2000, doi: 10.1163/156939300X01490.
doi:10.1163/156939300X01490