Vol. 92
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-04-25
Design of Yagi-Uda Antenna with Multiple Driven Elements
By
Progress In Electromagnetics Research C, Vol. 92, 101-112, 2019
Abstract
In this paper, we present a novel design for an end-fire antenna, which generalizes the concept of conventional Yagi-Uda antenna by introducing multiple driven elements. Through using the method of maximum power transmission efficiency, the optimal distribution of excitations for the multiple driven elements can be obtained, and the end-fire gain of the array can be significantly improved in comparison with the conventional Yagi-Uda antenna with a single driven element. In order to demonstrate the new idea, two different types of antenna arrays are designed and fabricated. The first design uses a split-ring resonator (SRR) as radiating element. Compared to similar planar Yagi-Uda SRR antenna arrays previously reported, the number of antenna elements can be reduced from fifteen to eight, and the longitudinal dimension is significantly reduced by 46% while the same performances are maintained with the gain reaching 11.7 dBi at 5.5 GHz. In the second design, printed half-wavelength dipoles are used as the antenna elements. It is shown that an eight-element dipole array with four driven elements has a peak gain of 13.4 dBi at 2.45 GHz, which is 1.8 dB higher than the conventional printed Yagi-Uda dipole antenna array with the same number of elements.
Citation
Huadong Guo, and Wen Geyi, "Design of Yagi-Uda Antenna with Multiple Driven Elements," Progress In Electromagnetics Research C, Vol. 92, 101-112, 2019.
doi:10.2528/PIERC19013002
References

1. Uda, S., "On the wireless beam of short electric waves,", Vol. 452, 273-282, Mar. 1926.

2. Uda, S., "On the wireless beam of short electric waves," J. Inst. Elect. Eng., Vol. 472, 1209-1219, Nov. 1927.
doi:10.1109/JRPROC.1928.221464

3. Yagi, H., "Beam transmission of the ultra short waves," Proc. IRE, Vol. 16, No. 6, 715-741, Jun. 1928.
doi:10.1109/TAP.1973.1140551

4. Cheng, D. K. and C. A. Chen, "Optimum element spacings for Yagi-Uda arrays," IEEE Trans. Antennas Propag., Vol. 21, No. 5, 615-623, Sep. 1973.
doi:10.1109/TAP.1975.1141001

5. Chen, C. A. and D. K. Cheng, "Optimum element lengths for Yagi-Uda arrays," IEEE Trans. Antennas Propag., Vol. 23, No. 1, 8-15, Jan. 1975.
doi:10.1109/APS.1989.134838

6. Huang, J., "Planar microstrip Yagi array antenna," Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 2, 894-897, Jun. 1989.

7. Densmore, A. and J. Huang, "Microstrip Yagi antenna for mobile satellite service," IEEE Antennas and Propagation Society Int. Symp., Vol. 2, 616-619, Jun. 1991.
doi:10.1109/8.86924

8. Huang, J. and A. Densmore, "Microstrip Yagi antenna for mobile satellite vehicle application," IEEE Trans. Antennas Propag., Vol. 39, No. 7, 1024-1030, Jul. 1991.

9. Ke, S. and K. Wong, "Rigorous analysis of rectangular microstrip antennas with parasitic patches," IEEE Antennas Propag. Society Int. Symp., Vol. 2, 968-971, Jun. 1995.
doi:10.1109/8.668900

10. Gray, D., J. Lu, and D. Thiel, "Electronically steerable Yagi-Uda microstrip patch antenna array," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 605-608, May 1998.
doi:10.1109/22.846717

11. Deal, W. R., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 6, 910-918, Jun. 2000.
doi:10.1109/TAP.2004.827543

12. Grajek, P. R., B. Schoenlinner, and G. M. Rebeiz, "A 24 GHz high-gain Yagi-Uda antenna array," IEEE Trans. Antennas Propag., Vol. 52, No. 5, 1257-1261, May 2004.
doi:10.1109/TAP.2006.889818

13. De Jean, G. and M. Tentzeris, "A new high-gain microstrip Yagi array antenna with a high frontto- back (F/B) ratio for WLAN and millimeter wave applications," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 298-304, Feb. 2007.
doi:10.1109/TAP.2012.2230239

14. Liu, J. H. and Q. Xue, "Microstrip magnetic dipole Yagi array antenna with endfire radiation and vertical polarization," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1140-1147, Mar. 2013.
doi:10.2528/PIERL12120407

15. Ding, Y., Y. C. Jiao, B. Li, and L. Zhang, "Folded triple-frequency quasi-Yagi-type antenna with modified CPW-to-CPS transition," Progress In Electromagnetics Research Letters, Vol. 37, 143-152, 2013.
doi:10.2528/PIERC13111803

16. Wang, Z. D., X. L. Liu, Y. Z. Yin, J. H. Wang, and Z. Li, "A novel design of folded dipole for broadband printed Yagi-Uda antenna," Progress In Electromagnetics Research C, Vol. 46, 23-30, 2014.

17. Wang, H., S. F. Liu, W. T. Li, and X. W. Shi, "Design of a wideband planar microstrip-fed quasi-Yagi antenna," Progress In Electromagnetics Research Letters, Vol. 46, 19-24, 2014.
doi:10.2528/PIERL14072507

18. Zhang, S., Z. Tang, and Y. Yin, "Wideband planar printed quasi-Yagi antenna with band-notched characteristic," Progress In Electromagnetics Research Letters, Vol. 48, 137-143, 2014.
doi:10.1109/TAP.2015.2427853

19. Hu, Z. X., Z. X. Shen, W. Wu, and J. Lu, "Low-profile top-hat monopole Yagi antenna for end-fire radiation," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 2851-2857, Jul. 2015.
doi:10.1109/LAWP.2016.2629499

20. Hu, Z. X., W. W.Wang, Z. X. Shen, and W.Wu, "Low-profile helical quasi-Yagi antenna array with multibeams at the endfire direction," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1241-1244, May 2017.
doi:10.1109/LAWP.2015.2469677

21. Yeo, J. and J. I. Lee, "Bandwidth enhancement of double-dipole quasi-yagi antenna using stepped slotline structure," IEEE Antennas Wireless Propag. Lett., Vol. 15, 694-697, Mar. 2016.

22. Wu, Y., M. Qu, L. Jiao, Y. Liu, and Z. Ghassemlooy, "Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns," AIP Advances, Vol. 6, No. 065308, 1-11, 2016.
doi:10.2528/PIERC16101601

23. Zhao, T. H., Y. Xiong, X. Yu, and H. H. Chen, "A broadband planar quasi-Yagi antenna with a modified bow-tie driver for multi-band 3G/4G applications," Progress In Electromagnetics Research C, Vol. 71, 59-67, 2017.
doi:10.1109/ACCESS.2018.2838328

24. Xu, K. D., D. T. Li, Y. H. Liu, and Q. H. Liu, "Printed quasi-yagi antennas using double dipoles and stub-loaded technique for multi-band and broadband applications," IEEE Access, Vol. 6, 31695-31702, Mar. 2018.
doi:10.1109/LAWP.2016.2629079

25. Aguila, P., S. Zuffanelli, G. Zamora, F. Paredes, F. Martın, and J. Bonache, "Planar yagi-uda antenna array based on split-ring resonators (SRRs)," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1233-1236, May 2017.
doi:10.1109/LAWP.2016.2647319

26. Cai, X., W. Geyi, and H. C. Sun, "A printed dipole array with high gain and endfire radiation," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1512-1515, Jun. 2017.

27. Wen, G., Foundations of Applied Electrodynamics, 273-275, Wiley, New York, NY, USA, 2010.
doi:10.1142/9040

28. Wen, G., Foundations for Radio Frequency Engineering, 410-420, World Scientific, 2015.
doi:10.1109/LAWP.2015.2428931

29. Jiang, Y. H., W. Geyi, L. S. Yang, and H. C. Sun, "Circularly-polarized focused microstrip antenna arrays," IEEE Antennas Wireless Propag. Lett., Vol. 15, 52-55, Feb. 2016.

30. Sun, H. C. and W. Geyi, "Optimum design of wireless power transmission systems in unknown electromagnetic environments," IEEE Access, Vol. 5, 20198-20206, Oct. 2017.
doi:10.1109/ACCESS.2018.2813299

31. Wan, W., W. Geyi, and S. Gao, "Optimum design of low-cost dual-mode beam-steerable arrays for customer-premises equipment applications," IEEE Access, Vol. 6, 16092-16098, Mar. 2018.
doi:10.1109/TAP.2018.2882653

32. Cai, X. and W. Geyi, "An optimization method for the synthesis of flat-top radiation patterns in the near- and far-field regions," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 980-987, Feb. 2019.
doi:10.1109/TMTT.2015.2432762

33. Zuffanelli, S., G. Zamora, P. Aguila, F. Paredes, F. Martın, and J. Bonache, "On the radiation properties of split-ring resonators (SRRs) at the second resonance," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 7, 2133-2141, Jul. 2015.