1. Valagiannopoulos, C. A., "On smoothening the singular field developed in the vicinity of metallic edges," International Journal of Applied Electromagnetics and Mechanics, Vol. 31, No. 2, 67-77, 2009. Google Scholar
2. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009. Google Scholar
3. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic PIN in a slab," Progress In Electromagnetics Research, Vol. 79, 1-21, 2008. Google Scholar
4. Gupta, M. and V. Mathur, "Koch fractal-based hexagonal patch antenna for circular polarization," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 25, No. 6, 4474-4485, 2017. Google Scholar
5. Valagiannopoulos, C. A., "On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder," Progress In Electromagnetics Research C, Vol. 3, 203-214, 2008. Google Scholar
6. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications,, Vol. 21, No. 5, 665-680, 2007. Google Scholar
7. Si, L.-M. and X. Lv, "CPW-FED multi-band Omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008. Google Scholar
8. Nguyen, D. T., H. L. Dong, and C. P. Hyun, "Small planar coplanar waveguide-fed dual bandnotched monopole ultra wideband antenna," Microwave and Optical Technology Letters, Vol. 53, No. 4, 920-924, 2011. Google Scholar
9. Yu, F. and C. Wang, "A CPW-fed novel planar ultra wideband antenna with a band notch characteristic," Radio Engineering, Vol. 18, No. 4, 551-555, 2009. Google Scholar
10. Evangelos, S. A., Z. A. Argiris, I. K. Dimitra, A. A. Antonis, L. Fotis, and D. Kostas, "Circular and elliptical CPW-fed slot and microstrip-fed antennas for ultrawideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 294-297, 2006. Google Scholar
11. Poonkuzhali, R., Z. C. Alex, and T. N. Balakrishnan, "Miniaturized wearable fractal-antenna for military application at VHF-band," Progress In Electromagnetics Research C, Vol. 62, 179-190, 2016. Google Scholar
12. Gianvittorio, J. P., et al. "Fractal antennas: A novel antenna miniaturization technique and applications," IEEE Antennas and Propagation Magazine, Vol. 44, 20-36, 2002. Google Scholar
13. Azari, A., "A new super wideband fractal microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1724-1727, May 2011. Google Scholar
14. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 4, 517-524, 1998. Google Scholar
15. Beigi, P. and P. Mohammadi, "A novel small triple-band monopole antenna with crinkle fractalstructure," Int. J. Electron. Commun., Vol. 70, 1382-1387, Elsevier AEU, 2016. Google Scholar
16. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcfa-Farcfa, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1451-1461, 2005. Google Scholar
17. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, 2258-2267, 2007. Google Scholar
18. Chang, D. C., B. H. Zeng, and J. C. Liu, "CPW-fed circular fractal slot antenna design for dualband applications," IEEE Transactions on Antennas and Propagation, Vol. 56, 3630-3636, 2008. Google Scholar
19. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett., Vol. 88, No. 4, 041109-041109-3, 2006. Google Scholar
20. Withayachumnankul, W., C. Fumeaux, and D. Abbott, "Near-field interactions in electric inductive-capacitive resonators for metamaterials," Journal of Physics D: Applied Physics, Vol. 45, No. 48, 485101, Nov. 2012. Google Scholar
21. Rusakov, A., I. Vendik, K. Kanjanasit, J. Hong, and D. Filonov, "Ultra wideband antenna with single- and dual-band notched characteristics based on electric ring resonator," Proc. Days on Diffraction, 350-355, St. Petersburg, Russia, Jun. 27–Jul. 1, 2016. Google Scholar
22. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarraabi, "A dual band fractal slit antenna loaded by jerusalem crosses for wireless plus WiMAX communications," Progress In Electromagnetics Research Letters, Vol. 61, 19-24, 2016. Google Scholar
23. Gorlaa, H. R. and F. J. Haracki-ewicz, "A novel rectangular circle planar monopole ant for ultra wide-band application," Progress In Electromagnetics Research C, Vol. 61, 65-73, 2016. Google Scholar
24. Joseph, S., B. Paul, S. Mridula, and P. Mohanan, "A novel Planar fractal antenna with CPW-feed for multiband applications," Radioengineering, Vol. 22, No. 4, 1262-1266, 2013. Google Scholar
25. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microw. Opt. Tech. Lett., Vol. 58, No. 1, 71-75, 2016. Google Scholar
26. Xu, H.-X., G.-M. Wang, Q. Peng, and J.-G. Liiang, "Novel design of triple-band band pass filter based on fractal shaped geometry of a complementary single split ring resonator," Int. J. Electr. Tay, Vol. 98, No. 5, 647-654, France, 2011. Google Scholar
27. Adel Abdelrehim, A. and H. G. Shirazz, "Performance improvement of patch antenna using circular split ring resonators and thin wires employing metamaterials lens," Progress In Electromagnetics Research B, Vol. 69, 137-155, 2016. Google Scholar
28. Saputro, S. A. and J.-Y. Chung, "Hilbert curve fractal antenna for dual on- and off-body communication," Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016. Google Scholar
29. Elavarasi, C. and T. Shanmuganantham, "Parametric analysis of water lily shaped SRR loaded fractal monopole antenna for multiband application," WASET Int. J. Electr. Comp. Energetic Electro Comm. Eng., Vol. 10, No. 9, 2016. Google Scholar