1. Erdem, E. and T. Filik, "Direction finding antenna array design with numerical modeling," 2012 20th Signal Processing and Communications Applications Conference (SIU), 1-4, IEEE, April 2012. Google Scholar
2. Shruthi, A. and S. K. Menon, "Design and analysis of modified log periodic dipole antenna with enhanced gain," 2016 Progress In Electromagnetic Research Symposium (PIERS), 1972-1976, Shanghai, China, August 8–11, 2016. Google Scholar
3. Wang, B. and A. Chen, "Design of an Archimedean spiral antenna," 2008 8th International Symposium on Antennas, Propagation and EM Theory, 348-351, IEEE, November 2008. Google Scholar
4. Dyson, J., "The characteristics and design of the conical log-spiral antenna," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 4, 488-499, 1965.
doi:10.1109/TAP.1965.1138471 Google Scholar
5. Stasiowski, M. and D. Schaubert, "Broadband array antenna," Proc. Antenna Appl. Symp., 42-59, September 2008. Google Scholar
6. Schaubert, D. H. and T. H. Chio, "Wideband vivaldi arrays for large aperture antennas," Perspectives on Radio Astronomy: Technologies for Large Antenna Arrays, Vol. 49, 2000. Google Scholar
7. Langley, J. D. S., P. S. Hall, and P. Newham, "Multi-octave phased array for circuit integration using balanced antipodal Vivaldi antenna elements," IEEE Antennas and Propagation Society International Symposium. 1995 Digest, Vol. 1, 178-181, IEEE, June 1995.
doi:10.1109/APS.1995.529990 Google Scholar
8. Bang, J., J. Lee, and J. Choi, "Design of a wideband antipodal Vivaldi antenna with an asymmetric parasitic patch," Journal of Electromagnetic Engineering and Science, Vol. 18, No. 1, 29-34, 2018.
doi:10.26866/jees.2018.18.1.29 Google Scholar
9. Naga Pavani, G., C. L. Prasanna, and N. N. Sastry, "An ultra wide band small aperture tapered slot phased array antenna covering 5.6–20 GHz," International Journal of Engineering and Technology, Vol. 7, No. 4, 2018. Google Scholar
10. Bhagyalakshmi, M., L. S. L. Sowjanya, and N. N. Sastry, "Compact antipodal vivaldi antenna with rectangular slots and shaping of flare to cover 6 to 18 GHz," Electromagnetics, Vol. 38, No. 8, 531-543, 2018.
doi:10.1080/02726343.2018.1543175 Google Scholar
11. Sneha, K. and N. N. Sastry, "A small aperture multi octave band tapered slot radiator," 2017 IEEE Conf. Antennas and Propagation in Wireless Communications (APWC), Verona, Italy, 2017. Google Scholar
12. Kindt, R. W. and W. R. Pickles, "Ultra wideband all-metal flared-notch array radiator," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3568-3575, 2010.
doi:10.1109/TAP.2010.2071360 Google Scholar
13. Yan, J. B., S. Gogineni, B. Camps-Raga, and J. Brozena, "A dual-polarized 2–18-GHz Vivaldi array for airborne radar measurements of snow," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 781-785, 2016.
doi:10.1109/TAP.2015.2506734 Google Scholar
14. Tianang, E. G., M. A. Elmansouri, and D. S. Filipovic, "Ultra-wideband lossless cavity-backed Vivaldi antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 115-124, 2018.
doi:10.1109/TAP.2017.2775286 Google Scholar
15. Kambham, P. and H. K. Paik, "Tapered slot vivaldi antenna for phased array applications," 2017 International Conference on Inventive Computing and Informatics (ICICI), 343-345, IEEE, November 2017. Google Scholar
16. Ansys "Ansys electromagnetics suite,", version 15.0.7, 2018, [Online].Available: www.ansys.com. Google Scholar