Vol. 91
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-04-11
Compact Complementary Folded Triangle Split Ring Resonator Triband Mobile Handset Planar Antenna for Voice and Wi-Fi Applications
By
Progress In Electromagnetics Research C, Vol. 91, 253-264, 2019
Abstract
In this work, a Complementary Folded Triangle Split Ring Resonator (CFTSRR) loaded triband mobile handset planar antenna is presented. The proposed antenna consists of a dumbbell-shaped radiating element and two CFTSRR metamaterial unit cells. The dumbbell-shaped radiating element resonates at 5 GHz. The presence of CFTSRRs additionally offers two lower band resonance. The CFTSRR-1 and CFTSRR-2 exhibit negative permittivity at 1.8 GHz and 2.4 GHz, respectively. The proposed antenna is designed to resonate at 1.8 GHz (GSM1800 MHz), 2.4 GHz, and 5 GHz (IEEE802.11ax) for voice and Wi-Fi applications of the mobile handset, respectively. The proposed antenna demonstrates compactness up to 88.6% at 1.8 GHz. The parametric studies are investigated to optimize the antenna in desired frequency bands by using Ansys HFSS19 software. The simulated and measured results are discussed. The measured result shows -10 dB reflection coefficient with bandwidth about 250 MHz (1.6 GHz-1.85 GHz), 50 MHz (2.375 GHz-2.425 GHz), and 225 MHz (4.925 GHz-5.15 GHz) which are 14.5%, 2%, and 5% respectively around their center frequencies. The measured maximum gain is approximately 1.7 dBi, 8 dBi, and 11.5 dBi for 1.8 GHz, 2.4 GHz, and 5 GHz, respectively.
Citation
Pitchai Rajalakshmi, and Nagarajan Gunavathi, "Compact Complementary Folded Triangle Split Ring Resonator Triband Mobile Handset Planar Antenna for Voice and Wi-Fi Applications," Progress In Electromagnetics Research C, Vol. 91, 253-264, 2019.
doi:10.2528/PIERC19021806
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 1st Edition, Wiley-IEEE Press, Hoboken, NJ, 2006, ISBN-10: 0471669857.
doi:10.1002/0471754323

2. Marques, R., F. Martn, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Hoboken, NJ, Wiley, 2007, ISBN: 978-0-471-74582-2.

3. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left handed transmission line," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 36-39, 2010.
doi:10.1109/LAWP.2010.2041628

4. Chen, Q., H. Zhang, Y.-J. Shao, and T. Zhong, "Bandwidth and gain improvement of an L-shaped slot antenna with metamaterial loading," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 1411-1415, 2018.
doi:10.1109/LAWP.2018.2848639

5. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, 2018.
doi:10.1049/iet-com.2018.0170

6. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian Journal of Radio & Space Physics, Vol. 40, 159-165, 2011.

7. Chou, Y.-J., G.-S. Lin, J.-F. Chen, L.-S. Chen, and M.-P. Houng, "Design of GSM/LTE multiband application for mobile phone antennas," Electronics Letters, Vol. 51, No. 17, 1304-1306, 2015.
doi:10.1049/el.2015.1839

8. Sharma, M., N. Mishra, and R. K. Chaudhary, "SRR based compact wideband metamaterial inspired antenna for WiMAX (2.5–2.7)/WLAN (2.4–2.48)/Bluetooth (2.4–2.48)/LTE (2.3–2.4) applications," Progress In Electromagnetics Research Letters, Vol. 80, 109-116, 2018.
doi:10.2528/PIERL18100802

9. Sameer, K., M. Sharma, A. Abdalla, and Z. Hu, "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microwaves, Antennas & Proagation, Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927

10. Varamini, G., A. Keshtkar, and M. Naser-Moghadasi, "Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface," International Journal of Electronics and Communications (AEU), Vol. 83, 32-39, 2018.
doi:10.1016/j.aeue.2017.08.024

11. Liu, W., L. Xu, and H. Zhan, "Design of 2.4GHz/5GHz planar dual-band electrically small slot antenna based on impedance matching circuit," International Journal of Electronics and Communications (AEU), Vol. 83, 322-328, 2018.
doi:10.1016/j.aeue.2017.08.040

12. Zhu, X., Y. Gu, and W.Wu, "A novel dual band antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 516-519, 2016.
doi:10.1109/LAWP.2015.2456039

13. Rajalakshmi, P. and N. Gunavathi, "Gain enhancement of cross shaped patch antenna for IEEE 802.11ax Wi-Fi applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401

14. Gunavathi, N. and D. Sriram Kumar, "Miniaturized unilateral coplanar waveguide-fed asymmetric planar antenna with reduced radiation hazards for 80.11ac application," Microwave and Optical Technology Letters, Vol. 58, No. 2, 337-342, 2015.
doi:10.1002/mop.28838

15. Gunavathi, N. and D. Sriram Kumar, "CPW-fed monopole antenna with reduced radiation hazards towards human head using metallic thin-wire mesh for 802.11ac application," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2684-2687, 2015.
doi:10.1002/mop.29411

16. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Edition, John Wiley & Sons, New York, 1997.

17. Vidyalakshmi, M. R., B. Rekha, and P. H. Rao, "Stopband characteristics of complementary triangular split ring resonator loaded microstrip line," 2011 IEEE Applied Electromagnetics Conference (AEMC), 2011.

18. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104