1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 1st Edition, Wiley-IEEE Press, Hoboken, NJ, 2006, ISBN-10: 0471669857.
doi:10.1002/0471754323
2. Marques, R., F. Martn, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Hoboken, NJ, Wiley, 2007, ISBN: 978-0-471-74582-2.
3. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left handed transmission line," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 36-39, 2010.
doi:10.1109/LAWP.2010.2041628 Google Scholar
4. Chen, Q., H. Zhang, Y.-J. Shao, and T. Zhong, "Bandwidth and gain improvement of an L-shaped slot antenna with metamaterial loading," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 1411-1415, 2018.
doi:10.1109/LAWP.2018.2848639 Google Scholar
5. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, 2018.
doi:10.1049/iet-com.2018.0170 Google Scholar
6. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Frequency switching of electrically small patch antenna using metamaterial loading," Indian Journal of Radio & Space Physics, Vol. 40, 159-165, 2011. Google Scholar
7. Chou, Y.-J., G.-S. Lin, J.-F. Chen, L.-S. Chen, and M.-P. Houng, "Design of GSM/LTE multiband application for mobile phone antennas," Electronics Letters, Vol. 51, No. 17, 1304-1306, 2015.
doi:10.1049/el.2015.1839 Google Scholar
8. Sharma, M., N. Mishra, and R. K. Chaudhary, "SRR based compact wideband metamaterial inspired antenna for WiMAX (2.5–2.7)/WLAN (2.4–2.48)/Bluetooth (2.4–2.48)/LTE (2.3–2.4) applications," Progress In Electromagnetics Research Letters, Vol. 80, 109-116, 2018.
doi:10.2528/PIERL18100802 Google Scholar
9. Sameer, K., M. Sharma, A. Abdalla, and Z. Hu, "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microwaves, Antennas & Proagation, Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927 Google Scholar
10. Varamini, G., A. Keshtkar, and M. Naser-Moghadasi, "Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface," International Journal of Electronics and Communications (AEU), Vol. 83, 32-39, 2018.
doi:10.1016/j.aeue.2017.08.024 Google Scholar
11. Liu, W., L. Xu, and H. Zhan, "Design of 2.4GHz/5GHz planar dual-band electrically small slot antenna based on impedance matching circuit," International Journal of Electronics and Communications (AEU), Vol. 83, 322-328, 2018.
doi:10.1016/j.aeue.2017.08.040 Google Scholar
12. Zhu, X., Y. Gu, and W.Wu, "A novel dual band antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 516-519, 2016.
doi:10.1109/LAWP.2015.2456039 Google Scholar
13. Rajalakshmi, P. and N. Gunavathi, "Gain enhancement of cross shaped patch antenna for IEEE 802.11ax Wi-Fi applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401 Google Scholar
14. Gunavathi, N. and D. Sriram Kumar, "Miniaturized unilateral coplanar waveguide-fed asymmetric planar antenna with reduced radiation hazards for 80.11ac application," Microwave and Optical Technology Letters, Vol. 58, No. 2, 337-342, 2015.
doi:10.1002/mop.28838 Google Scholar
15. Gunavathi, N. and D. Sriram Kumar, "CPW-fed monopole antenna with reduced radiation hazards towards human head using metallic thin-wire mesh for 802.11ac application," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2684-2687, 2015.
doi:10.1002/mop.29411 Google Scholar
16. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Edition, John Wiley & Sons, New York, 1997.
17. Vidyalakshmi, M. R., B. Rekha, and P. H. Rao, "Stopband characteristics of complementary triangular split ring resonator loaded microstrip line," 2011 IEEE Applied Electromagnetics Conference (AEMC), 2011. Google Scholar
18. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar