1. Mertz, J., Introduction to Optical Microscopy, Roberts and Company Publishers, United States of America, 2009.
2. Van Labeke, D. and D. Barchiesi, "Probes for scanning tunneling optical microscopy: A theoretical comparison," Journal of Optical Society of America A, Vol. 10, No. 10, 2193-2201, 1993.
doi:10.1364/JOSAA.10.002193 Google Scholar
3. Thio, T., K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbeseni, "Enhanced light transmission through a single subwavelength aperture," Optics Letters, Vol. 26, No. 24, 1972-1974, 2001.
doi:10.1364/OL.26.001972 Google Scholar
4. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 10, 163-182, 1944.
doi:10.1103/PhysRev.66.163 Google Scholar
5. Bouwkamp, C. J., "On Bethe’s theory of diffraction by small holes," Philips Res. Rep., Vol. 5, No. 10, 321-332, 1950. Google Scholar
6. Bouwkamp, C. J., "Diffraction theory. A critique of some recent developments,", Washington Sq. College of Arts and Science, New York University, 1953. Google Scholar
7. Balanis, A. C., Advanced Engineering Electromagnetics, 2nd edition, Wiley, New Jersey, 2012.
8. Leviatan, Y., "Study of near-zone fields of a small aperture," Journal of Applied Physics, Vol. 60, No. 5, 1577-1583, 1986.
doi:10.1063/1.337294 Google Scholar
9. Nakano, T. and S. Kawata, "Numerical analysis of the near-field diffraction pattern of a small aperture," Journal of Modern Optics, Vol. 39, No. 3, 645-661, 1992.
doi:10.1080/09500349214550611 Google Scholar
10. Durig, U., D. W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," Journal of Applied Physics, Vol. 59, No. 10, 3318-3327, 1986.
doi:10.1063/1.336848 Google Scholar
11. Miexner, J. and W. Andrejewski, "Strenge theorie der beugungebener elektromagnetischer wellen an der vollkommen leitenden kreisscheibe und an der kreisformigen Offnung im vollkommen leitenden ebenen schirm," Ann. Physik, Vol. 7, 157-158, 1950.
doi:10.1002/andp.19504420305 Google Scholar
12. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, London, 1959.
13. Flammer, C., "The vector wave function of the diffraction of electromagnetic waves by circular disks and apertures. I. Oblate spheroidal vector wave functions," Journal of Applied Physics, Vol. 24, 1218-1223, 1953.
doi:10.1063/1.1721474 Google Scholar
14. Roberts, A., "Electromagnetic theorycof diffraction by a circular aperture in a thick, perfectly conducting screen," Journal of Optical Society of America A, Vol. 4, 197-1983, 1987.
doi:10.1364/JOSAA.4.001970 Google Scholar
15. Van Labeke, D., D. Barchiesi, and F. Baida, "Optical characterization of nanosources used in scanning near-field optical microscropy," Journal of Optical Society of America A, Vol. 12, No. 4, 695-703, 1995.
doi:10.1364/JOSAA.12.000695 Google Scholar
16. Van Labeke, D., F. Baida, D. Barchiesi, and D. Courjon, "A theoretical model for the inverse scanning tunneling optical microscope (ISTOM)," Opt. Communi., Vol. 114, No. 5–6, 470-480, 1995.
doi:10.1016/0030-4018(94)00555-9 Google Scholar
17. Michalski, K. A., "Spectral domain analysis of a circular nano-aperture illuminating a planar layered sample," Progress In Electromagnetics Research B, Vol. 28, 307-323, 2011.
doi:10.2528/PIERB11011010 Google Scholar
18. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.
doi:10.2528/PIERB10101602 Google Scholar
19. Kobayashi, I., "Darstellung eines potentials in zylindrical koordinaten, das sich auf einer ebene unterwirft," Science Reports of the Thohoku Imperifal Unversity, Ser. I, Vol. XX, No. 2, 197–212, 1931. Google Scholar
20. Nomura, Y. and S. Katsura, "Diffraction of electric wave by circular plate and circular hole," Sci. Rep., Inst., Electr. Comm., Vol. 10, 1-26, Tohoku University, 1958. Google Scholar
21. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetic Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102 Google Scholar
22. Michalski, K. A. and J. R. Mosig, "On the plane wave-excited subwavelength circular aperture in a thin perfectly conducting flat screen," IEEE Trans. Antennas Propag., Vol. 62, 2121-2129, 2014.
doi:10.1109/TAP.2014.2302839 Google Scholar
23. Michalski, K. A. and J. R. Mosig, "Analysis of a plane wave-excited subwavelength circular aperture in a planar conducting screen illuminating a multilayer uniaxial sample," IEEE Trans. Antennas Propag., Vol. 63, 2054-2063, 2015.
doi:10.1109/TAP.2015.2404573 Google Scholar
24. Polycarpou, A. C. and A. M. Christou, "Closed-form expressions for the on-axis scattered fields by a sub-wavelength circular aperture in an infinite conducting plane," IEEE Trans. Antennas Propag., Vol. 65, 978-982, 2017.
doi:10.1109/TAP.2016.2634278 Google Scholar
25. Arfken, G. B. and H. J.Weber, Mathematical Methods for Physicists, 6th edition, Elsevier, 2005.