Vol. 93
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-06-18
On the Classical Electrodynamics in Dispersive Time-Dependent Linear Isotropic Media
By
Progress In Electromagnetics Research C, Vol. 93, 185-198, 2019
Abstract
The goal of this study is to conduct an analytical study of the properties (permittivity and permeability or refractive index) of a dispersive time-dependent linear isotropic medium interacting with electromagnetic fields. It is found that the permittivity and permeability of the time-dependent dispersive medium may either have an exponential profile or a sinusoidal profile. The permittivity and permeability can vanish or can be negative as in metamaterials. Therefore, the refractive index can vanish, so the electromagnetic wave can propagate at an infinite speed (c ≫ 3·10⁸ m/s). It is also shown that the permittivity and permeability can simultaneously be negative as in left-handed metamaterials (LHM). The general electric field and magnetic field solutions are derived, and the electric and magnetic flux densities are evaluated. The wave dispersion relation is also analysed. The obtained solutions can be used to validate experimental results by applying the initial and boundary conditions which are appropriate to the experimental setup. ε
Citation
Victor Nijimbere , "On the Classical Electrodynamics in Dispersive Time-Dependent Linear Isotropic Media," Progress In Electromagnetics Research C, Vol. 93, 185-198, 2019.
doi:10.2528/PIERC19022104
http://www.jpier.org/PIERC/pier.php?paper=19022104
References

1. Li, Y., S. Kita, P. Muoz, O. Reshef, D. I. Vulis, M. Yin, M. Lonar, and E. Mazur, "On-chip zero-index metamaterials," Nature Photonics, Vol. 9, 738-742, 2015.
doi:10.1038/nphoton.2015.198

2. Kormiltsev, V. V. and A. N. Mesentsev, Electric prospecting of polarising media, Ural division of Ac. Sc. of the USSR, Sverdlovsk, 1989.

3. Nijimbere, V., Ionospheric gravity wave interactions and their representation in terms of stochastic partial differential equations, Ph.D. thesis, Carleton University, 2014.

4. Nijimbere, V. and L. Campbell, "Electromagnetic field solutions in an isotropic medium with weakly-random fluctuations in time and some applications in the electrodynamics of the ionosphere," Progress In Electromagnetics Research B, Vol. 83, 77-92, 2019.
doi:10.2528/PIERB18102003

5. Pedrosa, I. A., A. Y. Petrov, and A. Rosas, "On the electrodynamics in time-dependent media," Eur. Phys. J. D, Vol. 66, No. 11, 309-313, 2012.
doi:10.1140/epjd/e2012-30308-9

6. Prain, A., S. Vezzoli, N. Westerberg, T. Roger, and D. Faccio, "Spontaneous photon production in time-dependent Epsilon-near-zero materials," Phys. Rev. Lett., Vol. 118, 133904, 2017.
doi:10.1103/PhysRevLett.118.133904

7. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489

8. Veselago, V. G., "The electrodynamics of substances with simutaneously negative values of ε and μ," Soviet Physics USPEKHI, Vol. 10, No. 4, 509-514, Jan.–Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699

9. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetic Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

10. Yablonovitch, E., "Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh-Davies-Fulling-DeWitt radiation and nonadiabatic casimir effect," Phys. Rev. Lett., Vol. 62, No. 15, 1742-1745, 1989.
doi:10.1103/PhysRevLett.62.1742