1. Doherty, W. H., "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of radio engineers, Vol. 24, No. 9, 1163-1182, 1936. Google Scholar
2. Ahn, G. H., M. S. Kim, H. C. Park, and Y. G. Yang, "Design of a high efficiency and high-power inverted Doherty amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 6, 1105-1111, 2007.
doi:10.1109/TMTT.2007.896807 Google Scholar
3. Lee, Y. S., M. W. Lee, and Y. H. Jeong, "Highly linear power tracking Doherty amplifier for WCDMA repeater applications," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 485-487, 2008.
doi:10.1109/LMWC.2008.925113 Google Scholar
4. Liu, Q.-A., S.-B. He, and W.-M. Shi, "Design of 3.5GHz linear high efficiency Doherty power amplifier with pre-matching," 2015 Asia Pacific Microwave Conference (APMC), 1-3, Nan Jing, 2015. Google Scholar
5. Xia, J., M. Yang, Y. Guo, and A. Zhu, "A broadband high-efficiency Doherty power amplifier with integrated compensating reactance," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2014-2024, 2016.
doi:10.1109/TMTT.2016.2574861 Google Scholar
6. Qi, T. and S. He, "Design of high efficiency Doherty power amplifier applying power controlling technology with 15 dB output power back-off," 2017 47th European Microwave Conference (EuMC), 576-579, Nuremberg, 2017.
doi:10.23919/EuMC.2017.8230913 Google Scholar
7. Zhou, X., S. Zheng, W. Chan, X. Fang, and D. Ho, "Post matching Doherty power amplifier with extended back-off range based on self-generated harmonic injection," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1951-1963, 2018.
doi:10.1109/TMTT.2017.2784811 Google Scholar
8. Son, J., I. Kim, J. Moon, J. Lee, and B. Kim, "A highly efficient asymmetric Doherty power amplifier with a new output combining circuit," 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), 1-4, TelAviv, 2011. Google Scholar
9. Jang, D., J. Choi, and J. Kim, "Asymmetric Doherty power amplifier with optimized characteristics in output power back-off range between 6 dB and 10 dB," The 40th European Microwave Conference, 870-873, Paris, 2010. Google Scholar
10. Iwamoto, M., A. Williams, P.-F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, "An extended Doherty amplifier with high efficiency over a wide power range," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, 2472-2479, 2001.
doi:10.1109/22.971638 Google Scholar
11. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "The AB-C Doherty power amplifier. Part I: Theory," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 293-306, 2009.
doi:10.1002/mmce.20350 Google Scholar
12. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "The AB-C Doherty power amplifier. Part II: validation," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 307-316, 2009.
doi:10.1002/mmce.20351 Google Scholar
13. Parkvall, S., A. Furuskar, and E. Dahlman, "Evolution of LTE toward IMT-advanced," IEEE Transactions on Communication Magazine, Vol. 49, No. 2, 84-91, 2011.
doi:10.1109/MCOM.2011.5706315 Google Scholar
14. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, 2012.
doi:10.1109/TMTT.2011.2175237 Google Scholar
15. Kwon, J., M. Seo, H. Lee, J. Gu, J. Ham, K. C. Hwang, and K. Lee, "Broadband Doherty power amplifier based on asymmetric load matching networks," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 62, No. 6, 533-537, 2015.
doi:10.1109/TCSII.2015.2407197 Google Scholar
16. Pang, J., S. He, Z. Dai, C. Huang, J. Peng, and F. You, "Design of a post-matching asymmetric Doherty power amplifier for broadband applications," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 1, 52-54, 2016.
doi:10.1109/LMWC.2015.2505651 Google Scholar
17. Pang, J., S. He, C. Huang, Z. Dai, J. Peng, and F. You, "A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4061-4071, 2015.
doi:10.1109/TMTT.2015.2495201 Google Scholar
18. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3–3.6GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, 2012.
doi:10.1109/TMTT.2012.2201745 Google Scholar
19. Sun, Y. and X. Zhu, "Broadband continuous class-F−1 amplifier with modified harmonic-controlled network for advanced long term evolution application," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 4, 250-252, 2015.
doi:10.1109/LMWC.2015.2400941 Google Scholar
20. Aridas, N. K., B. S. Yarman, and P. Chacko, "Wideband power amplifier for two-way radio applications via real-frequency technique," Electronics Letters, Vol. 50, No. 23, 1762-1764, 2014.
doi:10.1049/el.2014.2972 Google Scholar
21. Pozar, D. M., Microwave Engineering, 3rd Edition, Publishing House of Electronics Industry, 2015.
22. Chen, K. and D. Peroulis, "Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3162-3173, 2011.
doi:10.1109/TMTT.2011.2169080 Google Scholar
23. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "New output combiner for Doherty amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, 31-33, 2013.
doi:10.1109/LMWC.2012.2236308 Google Scholar
24. Matthaei, G. L., "Tables of Chebyshev impedance transformation networks of low-pass filter form," Proceedings of the IEEE, Vol. 52, No. 8, 939-963, 1964.
doi:10.1109/PROC.1964.3185 Google Scholar
25. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "An ultra-broadband GaN Doherty amplifier with 83% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 11, 775-777, 2014.
doi:10.1109/LMWC.2014.2345193 Google Scholar
26. Watanabe, S., Y. Takayama, R. Ishikawa, and K. Honjo, "A miniature broadband Doherty power amplifier with a series-connected load," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 572-579, 2015.
doi:10.1109/TMTT.2014.2377725 Google Scholar
27. Chen, C., P. Qiao, G. Wang, Z. Cheng, and Q. Xue, "A broadband three-device Doherty power amplifier based on a modified load modulation network," 2016 IEEE MTT-S International Microwave Symposium (IMS), 1-4, San Francisco, CA, 2016. Google Scholar
28. Huang, C., S. He, and F. You, "Design of broadband modified class-J Doherty power amplifier with specific second harmonic terminations," IEEE Access, Vol. 6, 2531-2540, 2018.
doi:10.1109/ACCESS.2017.2784094 Google Scholar
29. Khan, M. S., H. Zhang, X. Wang, R. Ullah, I. Ahmad, S. Shahzad, Q. A. Arain, and M. Z. Tunio, "A novel two-stage broadband Doherty power amplifier for wireless applications," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 1, 40-42, 2018.
doi:10.1109/LMWC.2017.2775157 Google Scholar