Vol. 93
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-06-14
A Quantum MIMO Architecture for Antenna Wireless Digital Communications
By
Progress In Electromagnetics Research C, Vol. 93, 143-156, 2019
Abstract
A general theoetical framework for MIMO digital wireless communications is proposed for sending classical M-ary information over quantum states instead of classical electromagnetic waves. The basic theory of quantum MIMO architecture suitable for spatial diversity application is proposed and analyzed. The fundamental design equations are derived and shown to be equivalent to a special constrained nonlinear optimization problem. The main advantage of the MIMO architecture is that it provides new resources for the system designer since using multiple Tx quantum antennas coupled with judicious choice of optimum positions for the multiple Rx quantum measurement operators can enhance the ability to realize quantum communication systems. Therefore, additional degrees of freedom are expected to become available in the proposed quantum MIMO systems. The proposed system is expected to be best physically realized using electromagnetic process in second-quantized (photon) states, ideally coherent or squeezed radiation states.
Citation
Said Mikki , "A Quantum MIMO Architecture for Antenna Wireless Digital Communications," Progress In Electromagnetics Research C, Vol. 93, 143-156, 2019.
doi:10.2528/PIERC19032404
http://www.jpier.org/PIERC/pier.php?paper=19032404
References

1. Lathi, B. P. and Z. Ding, Modern Digital and Analog Communication Systems, Oxford University Press, New York, 2009.

2. Hampton, J. R., Introduction to MIMO Communications, Cambridge University Press, 2014.

3. Marzetta, T. L., E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO, Cambridge University Press, 2016.
doi:10.1017/CBO9781316799895

4. Mikki, S. M. and Y. M. M. Antar, New Foundations for Applied Electromagnetics, Artech House, 2016.

5. Helstrom, C. W., J. W. S. Liu, and J. P. Gordon, "Quantum-mechanical communication theory," Proc. IEEE, Vol. 58, No. 10, 1578-1598, 1970.
doi:10.1109/PROC.1970.7983

6. Kennedy, R. S., A near-optimum receiver for the binary coherent state quantum channel, Massachusetts Institute of Technology (MIT Research Laboratory of Electronics Quarterly Progress Report 108), Technical Report, Cambridge (MA), January 1973.

7. Holevo, A. S., "Statistical decision theory for quantum systems," J. Multivar. Anal., Vol. 3, No. 4, 337-394, 1973.
doi:10.1016/0047-259X(73)90028-6

8. Yuen, H. P., R. Kennedy, and M. Lax, "Optimum testing of multiple hypotheses in quantum detection theory," IEEE Transactions on Information Theory, Vol. 21, No. 2, 125-134, 1975.
doi:10.1109/TIT.1975.1055351

9. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, 1976.

10. Cariolaro, G., Quantum Communications, Springer International Publishing, Switzerland, 2015.

11. Dirac, P. A. M., The Principles of Quantum Mechanics, 3rd Ed., Oxford UP, 1947.

12. Von Neumann, J., The Mathematical Foundations of Quantum Mechanics, New Ed., Princeton University Press, 2018.

13. Kato, K., M. Osaki, M. Sasaki, and O. Hirota, "Quantum detection and mutual information for QAM and PSK signals," IEEE Trans. Commun., Vol. 47, No. 2, 248-254, 1999.
doi:10.1109/26.752130

14. Vilnrotter, V. and C. W. Lau, Quantum detection and channel capacity using state-space optimization, NASA, Technical Report, Interplanetary Network Progress (IPN) Progress Report, 42148, February 2002.

15. Vilnrotter, V. and C. W. Lau, Quantum detection theory for the free-space channel, NASA, Technical Report, Interplanetary Network Progress (IPN) Progress Report, 42146, August 2001.

16. Eldar, Y. C., A. Megretski, and G. C. Verghese, "Optimal detection of symmetric mixed quantum states," IEEE Transactions on Information Theory, Vol. 50, No. 6, 1198-1207, 2004.
doi:10.1109/TIT.2004.828070

17. Vilnrotter, V. and C. W. Lau, Binary quantum receiver concept demonstration, NASA, Technical Report, Interplanetary Network Progress (IPN) Progress Report, 42165, May 2006.

18. Assalini, A., G. Cariolaro, and G. Pierobon, "Efficient optimal minimum error discrimination of symmetric quantum states," Phys. Rev. A, Vol. 81, 012315, 2010.
doi:10.1103/PhysRevA.81.012315

19. Cariolaro, G., R. Corvaja, and G. Pierobon, "Compression of pure and mixed states in quantum detection," Global Telecommunications Conference, GLOBECOM, Vol. 2011, 15, IEEE, 2011.

20. Holevo, A. S. and V. Giovannetti, "Quantum channels and their entropic characteristics," Rep. Prog. Phys., Vol. 75, No. 4, 046001, 2012.
doi:10.1088/0034-4885/75/4/046001

21. Glauber, R. J., Quantum Theory of Optical Coherence, Wiley, 2007.

22. Klauder, J. R. and E. C. G. Sudarshan, Fundamentals of Quantum Optics, W. A. Benjamin, Inc., New York and Amsterdam, 1968.

23. Merzbacher, E., Quantum Mechanics, 3rd Ed., Wiley, 1997.

24. Garrison, J. C. and R. Y. Chiao, Quantum Optics, Oxford University Press, 2008.
doi:10.1093/acprof:oso/9780198508861.001.0001

25. Ou, Z. J., Quantum Optics for Experimentalists, 432, World Scientific, New Jersey, 2017.
doi:10.1142/10453

26. Imre, S. and F. Balazs, Quantum Computing and Communications: An Engineering Approach, John Wiley & Sons Ltd, 2005.

27. Rieffel, E. and W. Polak, Quantum Computing: A Gentle Introduction, The MIT Press, 2011.

28. Bulletin of the Chinese Academy of Science, Quantum communications, Vol. 30, No. 2, BCAS, 2016.

29. Yard, J., P. Hayden, and I. Devetak, "Capacity theorems for quantum multiple-access channels: Classical-quantum and quantum-quantum capacity regions," IEEE Transactions on Information Theory, Vol. 54, No. 7, 3091-3113, July 2008.
doi:10.1109/TIT.2008.924665