1. Bhardwaj, A., T. K. Pant, R. K. Choudhary, D. Nandy, and P. K. Manoharan, "Space weather research: Indian perspective," Space Weather, Vol. 14, 1082-1094, 2016.
doi:10.1002/2016SW001521 Google Scholar
2. Raulin, J.-P. and A. A. Pacini, "Solar radio Solar radio emissions," Advances in Space Research, Vol. 35, No. 5, 739-754, 2005, ISSN 0273-1177.
doi:10.1016/j.asr.2005.03.138 Google Scholar
3. Bedingfield, K. L., R. D. Leach, and M. B. Alexander, "Spacecraft system failures and anomalies attributed to the natural space environment," NASA Reference Publication 1390, Marshall Space Flight Center, Aug. 1996. Google Scholar
4. Sobsey, M., A. Davis, and V. Rullman, "Solar effects on communications," IEEE Transactions on Power Delivery, Vol. 7, No. 2, 460-468, Apr. 1992.
doi:10.1109/61.127038 Google Scholar
5. Handzo, R., J. M. Forbes, and B. Reinisch, "Ionospheric electron density response to solar flares as viewed by Digisondes," Space Weather, Vol. 12, No. 4, 205-216, Apr. 2014.
doi:10.1002/2013SW001020 Google Scholar
6. Coates, R. J., H. Frey, G. D. Mead, and J. M. Bosworth, "Space-Age Geodesy: The NASA crustal dynamics project," IEEE Transactions on Geoscience and Remote Sensing, Vol. 23, No. 4, 360-368, Jul. 1985.
doi:10.1109/TGRS.1985.289425 Google Scholar
7. Bao, L., N. Wang, and F. Gao, "Improvement of data precision and spatial resolution of c GNSS-R altimetry using improved device with external atomic clock," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 2, 207-211, Feb. 2016.
doi:10.1109/LGRS.2015.2506186 Google Scholar
8. Chen, P., W. Yao, and X. Zhu, "Combination of ground- and space-based data to establish a global ionospheric grid model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 2, 1073-1081, Feb. 2015.
doi:10.1109/TGRS.2014.2333522 Google Scholar
9. Mao, T., et al., "First ionospheric radio-occultation measurements from GNSS occultation sounder on the Chinese Feng-Yun 3C satellite," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 9, 5044-5053, Sep. 2016.
doi:10.1109/TGRS.2016.2546978 Google Scholar
10. Foti, G., C. Gommenginger, M. Unwin, P. Jales, J. Tye, and J. Rosello, "An assessment of non-geophysical effects in spaceborne GNSS reflectometry data from the UK TechDemoSat-1 mission," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 7, 3418-3429, Jul. 2017.
doi:10.1109/JSTARS.2017.2674305 Google Scholar
11. Khodabandeh, A. and P. J. G. Teunissen, "Array-aided multifrequency GNSS ionospheric sensing: Estimability and precision analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 10, 5895-5913, Oct. 2016.
doi:10.1109/TGRS.2016.2574809 Google Scholar
12. Najibi, N., S. Jin, and X. Wu, "Validating the variability of snow accumulation and melting from GPS-reflected signals: Forward modeling," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2646-2654, Jun. 2015.
doi:10.1109/TAP.2015.2414950 Google Scholar
13. Valdivia, J. A., G. M. Milikh, and K. Papadopoulos, "Model of red sprites due to intracloud fractal lightning discharges," Radio Sci., Vol. 33, No. 6, 1655-1668, 1998.
doi:10.1029/98RS02201 Google Scholar
14. Baker, R. G. V., "The Sun-Earth connect 2: Modelling patterns of a fractal sun in time and space using the fine structure constant," Physica A: Statistical Mechanics and Its Applications, Vol. 468, 508-531, 2017, ISSN 0378-4371.
doi:10.1016/j.physa.2016.10.073 Google Scholar
15. Trinh-Van, S., H. B. Kim, G. Kwon, and K. C. Hwang, "Circularly polarized spidron fractal slot antenna arrays for broadband satellite communications in Ku-band," Progress In Electromagnetics Research, Vol. 137, 203-218, 2013.
doi:10.2528/PIER13010401 Google Scholar
16. Kuzu, S. and N. Akcam, "Array antenna using defected ground structure shaped with fractal form generated by apollonius circle," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1020-1023, 2017.
doi:10.1109/LAWP.2016.2616944 Google Scholar
17. Siakavara, K., "Hybrid-fractal direct radiating antenna arrays with small number of elements for satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2102-2106, Jun. 2010.
doi:10.1109/TAP.2010.2046868 Google Scholar
18. Nascetti, A., E. Pittella, P. Teofilatto, and S. Pisa, "High-gain S-band patch antenna system for earth-observation CubeSat satellites," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 434-437, 2015.
doi:10.1109/LAWP.2014.2366791 Google Scholar
19. Nakayama, J., H. Ogura, and M. Sakata, "A probabilistic theory of electromagnetic scattering from a random rough surface. 1. Horizontal polarization," Radio Sci., Vol. 16, 831-845, 1981.
doi:10.1029/RS016i005p00831 Google Scholar
20. Rogers, N. C., S. Quegan, J. S. Kim, and K. P. Papathanassiou, "Impacts of ionospheric scintillation on the BIOMASS P-band satellite SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 3, 1856-1868, Mar. 2014.
doi:10.1109/TGRS.2013.2255880 Google Scholar
21. Dadash, M. S., J. Hasch, P. Chevalier, A. Cathelin, N. Cahoon, and S. P. Voinigescu, "Design of low-power active tags for operation with 77-81-GHz FMCW radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 5377-5388, Dec. 2017.
doi:10.1109/TMTT.2017.2769079 Google Scholar
22. Shopov, S., M. G. Girma, J. Hasch, N. Cahoon, and S. P. Voinigescu, "Ultralow-power radar sensors for ambient sensing in the {V}-band," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 5401-5410, Dec. 2017.
doi:10.1109/TMTT.2017.2771261 Google Scholar
23. Berizzi, F. and E. Dalle-Mese, "Fractal analysis of the signal scattered from the sea surface," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 2, 324-338, 1999.
doi:10.1109/8.761073 Google Scholar
24. Poirier, J.-R., H. Aubert, and D. L. Jaggard, "Lacunarity of rough surfaces from the wavelet analysis of scattering data," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2130-2136, 2009.
doi:10.1109/TAP.2009.2016702 Google Scholar
25. Baars, J., "The measurement of large antennas with cosmic radio sources," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 4, 461-474, Jul. 1973.
doi:10.1109/TAP.1973.1140521 Google Scholar
26. Vuong, X. T. and J. Forsey, "Prediction of sun transit outages in an operational communication satellite system," IEEE Trans. Broadcast., Vol. 29, 121-126, Dec. 1983.
doi:10.1109/TBC.1983.266502 Google Scholar
27. Liang, D., P. Xu, L. Tsang, Z. Gui, and K. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413 Google Scholar
28. Freiley, A. J., B. L. Conroy, D. J. Hoppe, and A. M. Bhanji, "Design concepts of a 1MW CW X-band transmit/receive system for planetary radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 6, 1047-1055, Jun. 1992.
doi:10.1109/22.141334 Google Scholar
29. Sarabandi, K., E. S. Li, and A. Nashashibi, "Modeling and measurements of scattering from road surfaces at millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1679-1688, Nov. 1997.
doi:10.1109/8.650080 Google Scholar
30. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650 Google Scholar
31. Glatzmaier, G. A., M. Evonuk, and T. M. Rogers, "Differential rotation in giant planets maintained by density-stratified turbulent convection," Geophysical and Astrophysical Fluid Dynamics, Vol. 103, No. 1, 31-51, Feb. 2009.
doi:10.1080/03091920802221245 Google Scholar
32. Lovejoy, S. and D. Schertzer, "Generalized scale invariance in the atmosphere and fractal models of rain," Wat. Resour. Res., Vol. 21, No. 8, 1233-1250, Aug. 1985.
doi:10.1029/WR021i008p01233 Google Scholar
33. Shepard, M. K., R. A. Brackett, and R. E. Arvidson, "Self-affine (fractal) topography: Surface parameterization and radar scattering," Journal of Geophysical Research, Vol. 100, No. E6, 11709-11718, Jun. 1995.
doi:10.1029/95JE00664 Google Scholar
34. Jordan, T. M., M. A. Cooper, D. M. Schroeder, C. N. Williams, J. D. Paden, M. J. Siegert, and J. L. Bamber, "Self-affine subglacial roughness: Consequences for radar scattering and basal water discrimination in northern greenland," Cryosphere, Vol. 11, No. 3, 1247-1264, 2017.
doi:10.5194/tc-11-1247-2017 Google Scholar
35. Kjerstad, O. K., S. Loset, R. Skjetne, R. A. Skarbo, "An ice-drift estimation algorithm using radar and ship motion measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 6, 3007-3019, Jun. 2018.
doi:10.1109/TGRS.2017.2787996 Google Scholar
36. Rmili, H., D. Oueslati, I. B. Trad, J. M. Floch, A. Dobaie, and R. Mittra, "Investigation of a random-fractal antenna based on a natural tree-leaf geometry," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2084835, 7 pages, 2017. Google Scholar
37. Rmili, H., O. El Mrabet, J. M. Floc'h, and J. L. Miane, "Study of an electrochemically-deposited 3-D random fractal tree-monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1045-1050, Apr. 2007.
doi:10.1109/TAP.2007.893392 Google Scholar
38. Biswas, B., R. Ghatak, and D. R. Poddar, "A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6126-6129, Nov. 2017.
doi:10.1109/TAP.2017.2748361 Google Scholar
39. Shepard, M. K. and B. A. Campbell, "Radar scattering from a self-affine fractal surface: Near-nadir regime," Icarus, Vol. 141, No. 1, 156-171, 1999, ISSN 0019-1035.
doi:10.1006/icar.1999.6141 Google Scholar
40. Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio, "Fractals and the small perturbation scattering model," Radio Sci., Vol. 34, No. 5, 1043-1054, Sep.-Oct. 1999.
doi:10.1029/1999RS900053 Google Scholar
41. Iodice, A., A. Natale, and D. Riccio, "Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2156-2163, Apr. 2013.
doi:10.1109/TAP.2012.2236531 Google Scholar
42. Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio, "Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 9, 1405-1415, Sep. 1999.
doi:10.1109/8.793320 Google Scholar
43. Jaggard, D. L. and Y. Kim, "Diffraction by band-limited fractal screens," J. Opt. Soc. Am. A, Vol. 4, No. 6, 155-162, 1987.
doi:10.1364/JOSAA.4.001055 Google Scholar
44. Guo, L. X. and Z. S. Wu, "Fractal model and electromagnetic scattering from time-varying sea surface," Elec. Lett., Vol. 36, No. 21, 1810-1812, Oct. 2000. Google Scholar
45. Berizzi, F., E. D. Mese, and G. Pinelli, "A two-dimensional fractal model of the sea surface and sea spectrum evaluation," Proc. Inst. Elect. Eng. Int. Radar Conf., Edinburgh, Scotland, 189-193, Oct. 1997. Google Scholar
46. Lin, N., H. P. Lee, S. P. Lim, and K. S. Lee, "Wave scattering from fractal surfaces," Journal of Modern Optics, Vol. 42, No. 1, 225-241, 1995.
doi:10.1080/09500349514550181 Google Scholar
47. Wang, J., D. Feng, L. Xu, and W. Hu, "Synthetic aperture radar image modulation using phase-switched screen," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 911-915, May 2018.
doi:10.1109/LAWP.2018.2823079 Google Scholar
48. Berizzi, F., E. DalleMese, and G. Pinelli, "One-dimensional fractal model of the sea surface," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 146, No. 1, 55-64, Feb. 1999.
doi:10.1049/ip-rsn:19990259 Google Scholar
49. Mickelson, A. and D. Jaggard, "Electromagnetic wave propagation in almost periodic media," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 1, 34-40, Jan. 1979.
doi:10.1109/TAP.1979.1142029 Google Scholar
50. Rao, S. K., "Advanced antenna technologies for satellite communications payloads," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1205-1217, Apr. 2015.
doi:10.1109/TAP.2015.2391283 Google Scholar
51. Jia, Y. Y., L. Tang, C. Li, X. Yuan, and Y. Qian, "Current status and development of remote sensing technology standardization in China," 2012 IEEE International Geoscience and Remote Sensing Symposium, 2775-2777, Munich, 2012.
doi:10.1109/IGARSS.2012.6350857 Google Scholar
52. Adler-Golden, S. M. and J. R. Slusser, "Comparison of plotting methods for solar radiometer calibration," J. Atmos. Oceanic Technol., Vol. 24, 935-938, 2007.
doi:10.1175/JTECH2012.1 Google Scholar
53. Marzano, F. S., "Predicting antenna noise temperature due to rain clouds at microwave and millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2022-2031, Jul. 2007.
doi:10.1109/TAP.2007.900252 Google Scholar
54. ECC Report 243: Wireless video links in the frequency bands 2700-2900 MHz and 2900-3400 MHz, 19, Jan. 2016.
55. Schwengler, T., "Tower-top low-noise amplifiers for wireless communications," 1998 IEEE Aerospace Conference Proceedings (Cat. No. 98TH8339), Vol. 3, 311-316, Snowmass at Aspen, CO, 1998. Google Scholar
56. Stutzman, W. and H. Ko, "On the measurement of antenna beamwidth using extraterrestrial radio sources," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 3, 493-495, 1974.
doi:10.1109/TAP.1974.1140793 Google Scholar
57. De Villiers, D. I. L. and R. Lehmensiek, "Rapid calculation of antenna noise temperature in offset gregorian reflector systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1564-1571, Apr. 2015.
doi:10.1109/TAP.2015.2399933 Google Scholar
. "Radio noise," ITU Recommendation, ITU-R P.372-7, 5-9, International Telecommunication Union, Geneva, Switzerland, 2001. Google Scholar
59. Zhao, Y., A. A. Mouche, B. Chapron, and N. Reul, "Direct comparison between active C-band radar and passive L-band radiometer measurements: Extreme event cases," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 6, 897-901, 2018.
doi:10.1109/LGRS.2018.2811712 Google Scholar
60. Wait, D. F., "Precision measurement of antenna system noise using radio stars," IEEE Transactions on Instrumentation and Measurement, Vol. 32, No. 1, 110-116, Mar. 1983.
doi:10.1109/TIM.1983.4315019 Google Scholar
61. "Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link," ITU Recommendation, ITU-R S.1525, 1-3, International Telecommunication Union, Geneva, Switzerland, 2001. Google Scholar
62. Kuester, D. G., D. A. McGillivray, A. J. Wunderlich, and W. F. Young, "Interference tests at room temperature applied to deployed low-noise receivers," Natl. Inst. Stand. Technol. Tech. Note 1971 (NIST), 1-23, USA, Oct. 2017. Google Scholar
63. Ellingson, S. W., "Antennas for the next generation of low-frequency radio telescopes," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, 2480-2489, Aug. 2005.
doi:10.1109/TAP.2005.852281 Google Scholar
64. Hernandez-Pajares, M., A. Garcia-Rigo, J. M. Juan, J. Sanz, E. Monte, and A. Aragon-Angel, "Solar EUV flux rate estimation during mid and strong flares from the ionospheric electron content response signature in GNSS observations," 2013 7th European Conference on Antennas and Propagation (EuCAP), 3675-3678, Gothenburg, 2013. Google Scholar
65. Ulich, B., J. Davis, P. Rhodes, and J. Hollis, "Absolute brightness temperature measurements at 3.5-mm wavelength," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 3, 367-377, May 1980.
doi:10.1109/TAP.1980.1142330 Google Scholar
66. Baker, D. N. and L. J. Lanzerotti, "Resource letter SW1: Space weather," American Journal of Physics, Vol. 84, No. 3, 166-180, 2016.
doi:10.1119/1.4938403 Google Scholar
67. National Geophysical Data Center-Solar Data Services, Ottawa/Penticton 2800 MHz Solar Radio Flux, Colorado-USA, [Accessibility]-https://www.ngdc.noaa.gov/stp/solar/solardataservices.html.
68. Stephen, H., S. Ahmad, and T. C. Piechota, "Land surface brightness temperature modeling using solar insolation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 491-498, Jan. 2010.
doi:10.1109/TGRS.2009.2026893 Google Scholar
69. Urbarz, H. W., "Brightness temperature of solar active regions determined from drift curves of the sun across a broad antenna main lobe," Nature, Vol. 210, 891-893, May 28, 1966. Google Scholar
70. Randa, J., D. K. Walker, A. E. Cox, and R. L. Billinger, "Errors resulting from the reflectivity of calibration targets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 1, 50-58, Jan. 2005.
doi:10.1109/TGRS.2004.839809 Google Scholar
71. Murk, A., et al., "Low mass calibration target for mm-wave remote sensing instruments," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1547-1556, Apr. 2013.
doi:10.1109/TAP.2013.2242828 Google Scholar