1. FCC, , FCC 1st report and order on ultrawideband technology, Washington, DC, 2002.
2. Desai, A., T. Upadhyaya, R. Patel, S. Bhatt, and P. Mankodi, "Wideband high gain fractal antenna for wireless applications," Progress In Electromagnetics Research Letters, Vol. 74, 125-130, 2018.
doi:10.2528/PIERL18011504 Google Scholar
3. Fallahi, H. and Z. Atlasbaf, "Bandwidth enhancement of a CPW-fed monopole antenna with small fractal elements," AEU --- International Journal of Electronics and communications, Vol. 69, No. 2, 590-595, 2015.
doi:10.1016/j.aeue.2014.11.011 Google Scholar
4. Tripathi, S., A. Mohan, and S. Yadav, "Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement," IET Microw. Antennas Propag., Vol. 8, No. 15, 1445-1450, 2014.
doi:10.1049/iet-map.2014.0326 Google Scholar
5. Anguera, J., C. Puente, V. Borja, and J. Soler, "Fractal-shaped antennas: A review," Wiley Encycl. RF Microw. Eng., Vol. 2, 1620-1635, 2005. Google Scholar
6. Haji-Hashemi, M. R., M. Mir-Mohammad Sadeghi, and V. M. Moghtadai, "Space-filling patch antennas with CPW feed," PIERS Online, Vol. 2, No. 1, 69-73, Mar. 2006.
doi:10.2529/PIERS050905035108 Google Scholar
7. Tanweer, A., B. K. Subhash, and C. B. Rajashekhar, "A miniaturized decagonal sierpinski UWB fractal antenna," Progress In Electromagnetics Research C, Vol. 84, 161-174, 2018. Google Scholar
8. Brar, R. S. and S. K. Sharma, "A triple-band dipole antenna for UMTS/LTE and UWB," Applications, International Journal of Electronics Letters, 2017. Google Scholar
9. Sharan, R. K., S. K. Sharma, A. Gupta, and R. K. Chaudhary, "An edge tapered rectangular patch antenna with parasitic stubs and slot for wideband applications," Wireless Pers. Commun., Springer Science + Business Media, New York, 2015. Google Scholar
10. Sarkar, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 2014. Google Scholar
11. Sharma, S. K. and C.-W. Park, "A dual band-notched ultra wideband antenna using split ring resonators," 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 2016. Google Scholar
12. Siddiqui, J. Y., C. Saha, C. Sarkar, et al. "Ultra-wideband antipodal tapered slot antenna with integrated frequency notch characteristics," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1534-1539, 2018.
doi:10.1109/TAP.2018.2790176 Google Scholar
13. Shaik, L. A., C. Saha, Y. Antar, et al. "An antenna advances for cognitive radio: Introducing a multilayered split ring resonator-loaded printed ultra-wideband antenna with multifunctional characteristics," IEEE Antennas & Propagation Magazine, Vol. 1, 20-33, 2018.
doi:10.1109/MAP.2018.2796027 Google Scholar
14. Zhang, J., T. Chen, Y. Lv, and H. Xing, "A practical CPW-fed UWB antenna with reconfigurable dual band-notched characteristics," Progress In Electromagnetics Research M, Vol. 81, 117-126, 2019.
doi:10.2528/PIERM19040504 Google Scholar
15. Zhang, X.-M., J. Ma, C.-X. Li, A.-S. Ma, Q. Wang, and M.-X. Shao, "A new planar monopole UWB antenna with quad notched bands," Progress In Electromagnetics Research Letters, Vol. 81, 39-44, 2019. Google Scholar
16. Bilal, M. H., A. A. Rahim, H. Maab, and M. M. Ali, "Modified wang shaped ultra-wideband (UWB) fractal patch antenna for millimetre-wave applications," 2018 Progress In Electromagnetics Research Symposium (PIERS --- Toyama), 280-284, Japan, Aug. 1-4, 2018. Google Scholar
17. Guha, D., S. Biswas, and Y. M. M. Antar, Defected Ground Structure for Microstrip Antennas, in Microstrip and Printed Antennas: New Trends, Techniques and Applications, John Wiley & Sons, 2011.
18. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2018527, 22 pages, 2017. Google Scholar
19. Park, J.-I., C.-S. Kim, J. Kim et al. "Modelling of a photonic band-gap and its application for the low-pass filter design," Proceedings of the Asia Pacific Microwave Conference (APMC'99), Vol. 2, 331-334, Nov.-Dec. 1999. Google Scholar
20. Liu, H. W., Z. F. Li, X. W. Sun, and J. F. Mao, "An improved 1-D periodic defected ground structure for microstrip line," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, Apr. 2004. Google Scholar
21. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401 Google Scholar
22. Geng, J. P., J. J. Li, R. H. Jin, S. Ye, X. L. Liang, and M. Z. Li, "The development of curved microstrip antenna with defected ground structure," Progress In Electromagnetics Research, Vol. 98, 53-73, 2009.
doi:10.2528/PIER09081905 Google Scholar
23. Kazerooni, M. and A. Cheldavi, "Design and fabrication of wide band printed multi-ring fractal antenna for commercial applications," PIERS Proceedings, Beijing, China, Mar. 23-27, 2009. Google Scholar
24. Meena, M. L., M. Kumar, G. Parmar, and R. S. Meena, "Design analysis and modelling of directional UWB antenna with elliptical slotted ground structure for applications in C- & X-bands," Progress In Electromagnetics Research C, Vol. 63, 193-207, 2018. Google Scholar
25. Pele, I., A. Chousseaud, and S. Toutain, "Simulation modelling of impedance and radiation pattern antenna for UWB pulse modulation," Proc. IEEE AP-S Int. Symp., Vol. 2, 1871-1874, Jun. 2004. Google Scholar
26. Nashaat, D., H. A. Elsadek, E. Abdallah, H. Elhenawy, and M. F. Iskander, "Electromagnetic analyses and an equivalent circuit model of microstrip patch antenna with rectangular defected ground plane," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, Charleston, SC, 2009. Google Scholar
27. Garg, R., Microstrip Antenna Design Handbook, Artech House, 2001.