1. Forouzanfar, M. H., L. Alexander, H. R. Anderson, et al. "Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990{2013: A systematic analysis for the Global Burden of Disease Study 2013," Lancet, Vol. 386, No. 10010, 323-2287, 2015.
doi:10.1016/S0140-6736(15)00128-2 Google Scholar
2. Webb, M., S. Fahimi, G. M. Singh, et al. "Cost effectiveness of a government supported policy strategy to decrease sodium intake: Global analysis across 183 nations," Br. Med. J., Vol. 356, i6699, 2017.
doi:10.1136/bmj.i6699 Google Scholar
3. Johnson, R. J., M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sanchez-Lozada, "Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease," The American Journal of Clinical Nutrition, Vol. 86, No. 4, 899-906, Oct. 2007. Google Scholar
4. Islam, M. T., M. N. Rahman, M. S. J. Singh, and M. Samsuzzaman, "Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based sensor," IEEE Access, Vol. 6, 4118-4126, 2018.
doi:10.1109/ACCESS.2017.2787689 Google Scholar
5. Gennarelli, G., S. Romeo, M. R. Scarfi, and F. Soldovieri, "A microwave resonant sensor for concentration measurements of liquid solutions," IEEE Sensors Journal, Vol. 13, No. 5, 1857-1864, May 2013.
doi:10.1109/JSEN.2013.2244035 Google Scholar
6. Albishi, A. M. and O. M. Ramahi, "Highly sensitive microwaves sensors for fluid concentration measurements," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 4, 287-289, Apr. 2018.
doi:10.1109/LMWC.2018.2805866 Google Scholar
7. Finkenzeller, K., RFID Handbook: `Radio-frequency Identification Fundamentals and Applications', 2nd Ed., Wiley, 2004.
8. Marrocco, G., L. Mattioni, and C. Calabrese, "Multiport sensor RFIDs for wireless passive sensing of objects --- Basic theory and early results," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2691-2702, Aug. 2008.
doi:10.1109/TAP.2008.927541 Google Scholar
9. Occhiuzzi, C., C. Paggi, and G. Marrocco, "Passive RFID strain-sensor based on meander-line antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4836-4840, Dec. 2011.
doi:10.1109/TAP.2011.2165517 Google Scholar
10. Kalansuriya, P., R. Bhattacharyya, and S. Sarma, "RFID tag antenna-based sensing for pervasive surface crack detection," IEEE Sensors Journal, Vol. 13, No. 5, 1564-1570, May 2013.
doi:10.1109/JSEN.2013.2240155 Google Scholar
11. Kim, S., Y. Kawahara, A. Georgiadis, A. Collado, and M. M. Tentzeris, "Low-cost inkjet-printed fully passive RFID tags for calibration-free capacitive/haptic sensor applications," IEEE Sensors Journal, Vol. 15, No. 6, 3135-3145, Jun. 2015.
doi:10.1109/JSEN.2014.2366915 Google Scholar
12. Wu, X., et al., "Design of a humidity sensor tag for passive wireless applications," Sensors, Vol. 15, No. 10, 25564-25576, Basel, Switzerland, Oct. 7, 2015.
doi:10.3390/s151025564 Google Scholar
13. Caizzone, S., E. Di Giampaolo, and G. Marrocco, "Constrained pole-zero synthesis of phase-oriented RFID sensor antennas," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 496-503, Feb. 2016.
doi:10.1109/TAP.2015.2511788 Google Scholar
14. Escobedo, P., et al., "Passive UHF RFID tag for multispectral assessment," Sensors, Vol. 16, No. 7, 1085, Basel, Switzerland, Jul. 14, 2016.
doi:10.3390/s16071085 Google Scholar
15. Fernandez-Salmeron, J., et al., "Passive UHF RFID tag with multiple sensing capabilities," Sensors, Vol. 15, No. 10, 26769-26782, Basel, Switzerland, Oct. 22, 2015.
doi:10.3390/s151026769 Google Scholar
16. Chen, X., L. Ukkonen, and T. Bjorninen, "Passive E-textile UHF RFID-based wireless strain sensors with integrated references," IEEE Sensors Journal, Vol. 16, No. 22, 7835-7836, Nov. 15, 2016.
doi:10.1109/JSEN.2016.2608659 Google Scholar
17. Bhattacharyya, R., C. Floerkemeier, and S. Sarma, "Low-cost, ubiquitous RFID-tag-antenna-based sensing," Proceedings of the IEEE, Vol. 98, No. 9, 1593-1600, Sep. 2010.
doi:10.1109/JPROC.2010.2051790 Google Scholar
18. Buchner, R., G. T. Hefter, and P. M. May, "Dielectric relaxation of aqueous NaCl solutions," J. Phys. Chem. A, Vol. 103, 1-9, 1999.
doi:10.1021/jp982977k Google Scholar
19. Malmberg, C. G. and A. A. Maryott, "Dielectric constants of aqueous solutions of dextrose and sucrose," Journal of Research of the National Bureau of Standards, Vol. 45, No. 4, Oct. 1950. Google Scholar
20., http://www.murata.com/»/media/webrenewal/support/library/catalog/products/k70e.ashx.
21. Daiki, M., H. Chaabane, E. Perret, S. Tedjni, and T. Aguili, "RFID chip impedance measurement for UHF tag design," PIERS 2011 in Marrakesh Proceedings, 679, Marrakesh, Morocco, Mar. 20-23, 2011. Google Scholar
22. Miron, D. B., Small Antenna Design, Newnes, 2006.
23. Terman, F. E., Radio Engineer's Handbook, McGraw-Hill, 1945.
24., http://www.triumphlaser.com/laser-cutting-system/.
25. Qing, X., C. K. Goh, and Z. N. Chen, "Impedance characterization of RFID tag antennas and application in tag co design," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1268-1274, May 2009.
doi:10.1109/TMTT.2009.2017288 Google Scholar
26. Kraus, J. D. and R. J. Marhefka, Antennas, 3rd Ed., Chapter 13, McGraw-Hill, 2002.
27. Deleruyelle, T., P. Pannier, M. Egels, and E. Bergeret, "Dual band mono-chip HF-UHF tag antenna," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, Canada, Jul. 2010. Google Scholar
28. Colella, R., L. Catarinucci, P. Coppola, and L. Tarricone, "Measurement platform for electromagnetic characterization and performance evaluation of UHF RFID tags," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 4, 905-914, Apr. 2016.
doi:10.1109/TIM.2016.2516322 Google Scholar