Vol. 95
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-08-16
Low Profile, High Gain and Wideband Circularly Polarized Antennas Using Hexagonal Shape Parasitic Patches
By
Progress In Electromagnetics Research C, Vol. 95, 15-27, 2019
Abstract
This paper proposes low profile, high gain and wideband circularly polarized (CP) microstrip antennas (MSA), using gap coupled parasitic patches (PPs) on superstrate layer. Printed and suspended probe fed, CP MSAs are designed on a 1.59 mm thick FR4 substrate, and an array of closely spaced hexagonal PPs are printed on the bottom side of the 1.59 mm thick FR4 superstrate and placed at a height about λ0/8, above the ground plane, where λ0 is the free space wavelength, corresponding to the central frequency of the operating frequency band. The gap coupled hexagonal PPs are not only used to enhance the axial ratio bandwidth (AR BW) and gain of the antenna, but also used to reduce impedance and gain variation of the antenna over the operating frequency band. `Ant9' is a suspended MSA with 7 hexagonal PPs. A prototype `Ant9' is fabricated and tested, which provides a peak gain of 9 dBi, S11 < -10 dB, gain variation < 1 dB, and AR < 3 dB over 4.9 to 6.45 GHz frequency band. ARBW of 27.3% is achieved. The proposed `Ant9' covers three frequency bands viz., 5.15 to 5.35 GHz, WLAN band, 5.725 to 5.875 GHz, ISM band, and 5.9 to 6.4 GHz, Satellite C band. The space fed antenna configuration reduces the cross polar radiation level (CPL) and increases the efficiency of the antenna. A prototype antenna is fabricated and tested. The measured results agree with the simulation ones. The overall size of `Ant9' is 0.96λ0×0.96λ0×0.136λ0.
Citation
Shishir Digamber Jagtap Rajashree Thakare Rajiv Kumar Gupta , "Low Profile, High Gain and Wideband Circularly Polarized Antennas Using Hexagonal Shape Parasitic Patches," Progress In Electromagnetics Research C, Vol. 95, 15-27, 2019.
doi:10.2528/PIERC19060602
http://www.jpier.org/PIERC/pier.php?paper=19060602
References

1. Nasimuddin, K. P. Esselle, and A. K. Verma, "Wideband circularly polarized stacked microstrip antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 21-24, 2007.
doi:10.1109/LAWP.2006.890749

2. Oraizi, H. and R. Pazoki, "Wideband circularly polarized aperture-fed rotated stacked fed antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1048-1054, 2013.
doi:10.1109/TAP.2012.2229378

3. Yang, W., J.-Y. Zhou, Z. Yu, and L. Li, "Single fed low profile broadband circularly polarized stacked patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5406-5410, Oct. 2014.
doi:10.1109/TAP.2014.2344657

4. Yang, W., W.-J. Sun, W. Qin, J.-X. Chen, and J.-Y. Zhou, "Broadband circularly polarized stacked patch antenna with integrated dual feed network," IET Microwave and Antennas Propagation, Vol. 11, No. 12, 1791-1795, 2017.
doi:10.1049/iet-map.2016.1158

5. Nasimuddin, X. Qing, and Z. N. Chen, "A wideband circularly polarized stacked slotted microstrip patch antenna," IEEE Antennas and Propagation Magazine, Vol. 55, No. 6, Dec. 2013.
doi:10.1109/MAP.2013.6781708

6. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.

7. Deshmukh, A. A., A. Parvez, P. Verma, A. Desai, P. Kadam, and K. P. Ray, "Space fed ring microstrip antenna array with stacked rectangular microstrip antenna feed," IEEE Annual India Conference (INDICON), 2017, ISSN: 2325-9418.

8. Mathur, P. and G. Kumar, "Non radiating edge coupled rectangular microstrip antenna array," IEEE Asia-Pacific Microwave Conference, 2017, ISSN: 2165-4743.

9. Kumar, H. and G. Kumar, "Compact planar Yagi-Uda antenna with improved characteristics," 11th Euro-pean Conference, 2017.

10. Hao, Y., G. Wang, Y. Tian, Y. Wang, L. Yu, and X. Ye, "Wide beamwidth circularly polarized microstrip Yagi array antenna," IEEE International Confrenece on Communication Problem-Solving (ICCP), Apr. 2016.

11. Li, Y., S. Sun, and F. Yang, "Miniaturized Yagi-Uda-oriented double-ring antenna with circular polarization and directional pattern," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 945-948, 2013.
doi:10.1109/LAWP.2013.2274491

12. Zhou, W., J. Liu, and Y. Long, "A broadband and high-gain planar complementary Yagi array antenna with circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1446-1451, Jan. 2017.
doi:10.1109/TAP.2016.2647688

13. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas and Wireless Propag. Lett., Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926

14. Ji, L.-Y., P.-Y. Qin, and Y. Jay Guo, "Wideband Fabry-Perot cavity antenna with a shaped ground plane," IEEE Access, Vol. 6, 2291-2297, 2018.
doi:10.1109/ACCESS.2017.2782749

15. Wang, N., J. Li, G. Wei, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates," IEEE Antennas Wireless and Propag. Lett., Vol. 14, 229-232, 2015.
doi:10.1109/LAWP.2014.2360703

16. Samanta, G. and S. R. Bhadra Choudhuri, "Design of a compact CP antenna with enhanced bandwidth using a novel hexagonal ring based reactive impedance substrate," Progress In Electromagnetics Research M, Vol. 69, 115-125, 2018.
doi:10.2528/PIERM18041004