1. Engheta, N., "Use of fractional integration to propose some ``fractional" solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996. Google Scholar
2. Engheta, N., "Fractional curl operator in electromagnetic," Microwave and Optical Technology Letters, Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E Google Scholar
3. Engheta, N., "Phase and amplitude of fractional-order intermediate wave," Microwave and Optical Technology Letters, Vol. 21, No. 5, 338-343, 1999.
doi:10.1002/(SICI)1098-2760(19990605)21:5<338::AID-MOP10>3.0.CO;2-P Google Scholar
4. Engheta, N., Fractional Paradigm in Electromagnetic Theory, Frontiers in Electromagnetics, D. H. Werner and R. Mittra (editors), IEEE Press, 2000.
5. Veliev, E. I. and N. Engheta, "Generalization of Green's theorem with fractional differ integration," 2003 IEEE AP-S International Symposium & USNC/URSI National Radio Science Meeting, 2003. Google Scholar
6. Veliev, E. I. and M. V. Ivakhnychenko, "Fractional curl operator in radiation problems," Proceedings of MMET, 231-233, Dniepropetrovsk, 2004, doi: 10.1109/MMET.2004.1396991. Google Scholar
7. Ivakhnychenko, M. V., E. I. Veliev, and T. M. Ahmedov, "Scattering properties of the strip with fractional boundary conditions and comparison with the impedance strip," Progress In Electromagnetics Research C, Vol. 2, 189-205, 2008.
doi:10.2528/PIERC08031502 Google Scholar
8. Veliev, E. I., T. M. Ahmedov, and M. V. Ivakhnychenko, Fractional Operators Approach and Fractional Boundary Conditions, Electromagnetic Waves, Vitaliy Zhurbenko (editor), IntechOpen, 2011, doi: 10.5772/16300.
9. Veliev, E. I., M. V. Ivakhnychenko, and T. M. Ahmedov, "Fractional boundary conditions in plane waves diffraction on a strip," Progress In Electromagnetics Research, Vol. 79, 443-462, 2008.
doi:10.2528/PIER07102406 Google Scholar
10. Veliyev, E. I., K. Karacuha, E. Karacuha, and O. Dur, "The use of the fractional derivatives approach to solve the problem of di®raction of a cylindrical wave on an impedance strip," Progress In Electromagnetics Research Letters, Vol. 77, 19-25, 2018.
doi:10.2528/PIERL18032202 Google Scholar
11. Veliev, E. I., K. Karacuha, and E. Karacuha, "Scattering of a cylindrical wave from an impedance strip by using the method of fractional derivatives," XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2018, doi: 10.1109/DIPED.2018.8543322. Google Scholar
12. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and fractional non-symmetric transmission line," Progress In Electromagnetics Research, Vol. 59, 199-213, 2006.
doi:10.2528/PIER05092801 Google Scholar
13. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604 Google Scholar
14. Tarasov, V. E., "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media," Springer Science & Business Media, 2011, doi: 10.1007/978-3-642-14003-7. Google Scholar
15. Tarasov, V. E., "Fractional vector calculus and fractional Maxwell's equations," Annals of Physics, Vol. 323, 2756-2778, 2008, doi: 10.1016/j.aop.2008.04.005.
doi:10.1016/j.aop.2008.04.005 Google Scholar
16. Samko, S. G., A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theoryand Applications, Gordon and Breach Science Publ., 1993.
17. Honl, H., A. Maue, and K. Westpfahl, Theorie der Beugung, Springer-Verlag, 1961.
18. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, John Wiley & Sons, 2017.
doi:10.1002/9781119079699
19. Balanis, C. A., Advanced Engineering Electromagnetics, John Willey & Sons Inc., 1989.