Vol. 95
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-09-03
Electrically Small ACS-Fed Flipped MIMO Antenna for USB Portable Applications
By
Progress In Electromagnetics Research C, Vol. 95, 141-152, 2019
Abstract
An electrically small Asymmetric Co-planar Strip (ACS)-fed MIMO antenna for USB wireless applications is proposed. MIMO antenna consists of two electrically small antennas inserted inside a 3D-printed USB prototype. Electrically small ACS-fed antenna consists of an F-shaped monopole radiator with a U-shaped slot inserted into it. The proposed antenna is compact with dimensions 11 × 20 × 0.508 mm3. The proposed MIMO antenna has dual bands which caters to WiMAX-3.5/5.5 GHz, WLAN-5.8 GHz, and C-band-6.3 GHz. The proposed architecture attains reasonable gain for the available aperture. Also, ACS-fed antenna achieves fractional bandwidth of 22% and 20% in the lower and upper bands respectively complying with the theoretical bandwidth as defined by Chu's limit. Isolation between the radiators is greater than 15 dB in both the operating bands. Radiation patterns have high integrity, and actual USB deployment is presented. Simulation and measurement results are presented.
Citation
Muhammad Idrees Magray Gulur Sadananda Karthikeya Khalid Muzaffar Shiban Kishen Koul , "Electrically Small ACS-Fed Flipped MIMO Antenna for USB Portable Applications," Progress In Electromagnetics Research C, Vol. 95, 141-152, 2019.
doi:10.2528/PIERC19071003
http://www.jpier.org/PIERC/pier.php?paper=19071003
References

1. Su, S., J. Chou, and K. Wong, "Internal ultrawideband monopole antenna for wireless USB dongle applications," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1180-1183, Apr. 2007.
doi:10.1109/TAP.2007.893398

2. Rowell, C. and E. Y. Lam, "Mobile-phone antenna design," IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, 14-34, Aug. 2012.
doi:10.1109/MAP.2012.6309152

3. Wong, K.-L., S.-W. Su, C.-L. Tang, and S.-H. Yeh, "Internal shorted patch antenna for a UMTS folder-type mobile phone," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3391-3394, Oct. 2005.
doi:10.1109/TAP.2005.856037

4. Huo, Y., X. Dong, and W. Xu, "5G cellular user equipment: From theory to practical hardware design," IEEE Access, Vol. 5, 13992-14010, 2017.
doi:10.1109/ACCESS.2017.2727550

5. Koziel, S., S. Ogurtsov, W. Zieniutycz, and A. Bekasiewicz, "Design of a planar UWB dipole antenna with an integrated balun using surrogate-based optimization," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 366-369, 2015.
doi:10.1109/LAWP.2014.2363932

6. Thummaluru, S. R., R. Kumar, and R. K. Chaudhary, "Isolation and frequency reconfigurable compact MIMO antenna for wireless local area network applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 4, 519-525, Mar. 27, 2019.
doi:10.1049/iet-map.2018.5895

7. Thummaluru, S. R., R. Kumar, and R. K. Chaudhary, "Isolation and frequency reconfigurable compact MIMO antenna for wireless local area network applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 4, 519-525, Mar. 27, 2019.
doi:10.1049/iet-map.2018.5895

8. Zhou, G., "Shorting-pin loaded annular ring microstrip antenna," IEEE Antennas and Propagation Society International Symposium, 1998 Digest. Antennas: Gateways to the Global Network, Held in conjunction with: USNC/URSI National Radio Science Meeting, Vol. 2, 900-903, Cat. No. 98CH36, Atlanta, GA, 1998.

9. Saurav, K., D. Sarkar, and K. V. Srivastava, "CRLH unit-cell loaded multiband printed dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 852-855, 2014.
doi:10.1109/LAWP.2014.2320918

10. Hawatmeh, D. F., S. LeBlanc, P. I. Deffenbaugh, and T. Weller, "Embedded 6-GHz 3-D printed half-wave dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 145-148, 2017.
doi:10.1109/LAWP.2016.2561918

11. Chouti, L., I. Messaoudene, T. A. Denidni, and A. Benghalia, "Triple-band CPW-fed monopole antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 69, 1-7, 2017.
doi:10.2528/PIERL17031910

12. Saad, A., A. Ibrahim, O. Haraz, and A. Elboushi, "Tri-band compact ACS-fed meander-line antenna for wireless communications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 9, 1895-1903, 2017.
doi:10.1017/S1759078717000745

13. Kumar, A., P. V. Naidu, and V. Kumar, "A compact uniplanar ACS fed multi band low cost printed antenna for modern 2.4/3.5/5 GHz applications," Microsyst. Technol., Vol. 24, No. 3, 1413, 2018.
doi:10.1007/s00542-017-3556-9

14. Qin, H. and Y.-F. Liu, "Compact UWB MIMO antenna with ACS-fed structure," Progress In Electromagnetics Research C, Vol. 50, 29-37, 2014.
doi:10.2528/PIERC14033105

15. Ibrahim, A. A., M. A. Abdalla, and Z. Hu, "Compact ACS-fed CRLH MIMO antenna for wireless applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 6, 1021-1025, 2018.
doi:10.1049/iet-map.2017.0975

16. Zhang, J.-Y., F. Zhang, W.-P. Tian, and Y.-L. Luo, "ACS-fed UWB-MIMO antenna with shared radiator," Electronics Letters, Vol. 51, No. 17, 1301-1302, 2015.
doi:10.1049/el.2015.1327

17. Wong, H., K. K. So, K. B. Ng, K. M. Luk, C. H. Chan, and Q. Xue, "Virtually shorted patch antenna for circular polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1213-1216, 2010.
doi:10.1109/LAWP.2010.2100361

18. Wang, D., H. Wong, and C. H. Chan, "Small patch antennas incorporated with a substrate integrated irregular ground," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3096-3103, Jul. 2012.
doi:10.1109/TAP.2012.2196915

19. Amani, N. and A. Jafargholi, "Zeroth-order and TM10 modes in one-unit cell CRLH mushroom resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1396-1399, 2015.
doi:10.1109/LAWP.2015.2407955

20. Gauthier, G. P., A. Courtay, and G. M. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, Aug. 199.
doi:10.1109/8.611252

21. Zhang, C., J. Gong, Y. Li, and Y. Wang, "Zeroth-order-mode circular microstrip antenna with patch-like radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 446-449, 2018.
doi:10.1109/LAWP.2018.2794553

22. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038

23. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 672-676, May 1996.
doi:10.1109/8.496253

24. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, 1298-1324, 2005.
doi:10.1109/TAP.2005.844443

25. Sievenpiper, D. F., et al., "Experimental validation of performance limits and design guidelines for small antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 8-19, Jan. 2012.
doi:10.1109/TAP.2011.2167938

26. Kumar Naik, K. and D. Gopi, "Flexible CPW-fed split-triangular shaped patch antenna for WiMAX applications," Progress In Electromagnetics Research M, Vol. 70, 157-166, 2018.

27. Sun, X. L., L. Liu, S. W. Cheung, and T. I. Yuk, "Dual-band antenna with compact radiator for 2.4/5.2/5.8 GHz WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5924-5931, Dec. 2012.
doi:10.1109/TAP.2012.2211322

28. Kumar Naik, K., "Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications," AEU — International Journal of Electronics and Communications, Vol. 93, 103-108, 2018.
doi:10.1016/j.aeue.2018.06.008

29. Hu, W., J. Wu, S. Zheng, and J. Ren, "Compact ACS-fed printed antenna using dual edge resonators for tri-band operation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 207-210, 2016.
doi:10.1109/LAWP.2015.2480799

30. Patel, U. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502

31. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microw. Opt. Technol. Lett., Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494

32. Deepu, V., R. K. Raj, M. Joseph, S. M. N., and P. Mohanan, "Compact asymmetric coplanar strip fed monopole antenna for multiband applications," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2351-2357, Aug. 2007.
doi:10.1109/TAP.2007.901847

33. Li, X., X. Shi, W. Hu, P. Fei, and J. Yu, "Compact triband ACS-fed monopole antenna employing open-ended slots for wireless communication," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 388-391, 2013.
doi:10.1109/LAWP.2013.2252414

34. Sharma, S. K., M. A. Abdalla, and Z. Hu, "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1444-1449, Jul. 4, 2018.
doi:10.1049/iet-map.2017.0927

35. Sipal, D., M. P. Abegaonkar, and S. K. Koul, "Compact dual band-notched UWB MIMO antenna for USB dongle application with pattern diversity characteristics," Progress In Electromagnetics Research C, Vol. 87, 87-96, 2018.
doi:10.2528/PIERC18080106

36. Mikki, S. M. and Y. M. M. Antar, "On cross correlation in antenna arrays with applications to spatial diversity and MIMO systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1798-1810, Apr. 2015.
doi:10.1109/TAP.2015.2398113

37. Abdalla, M. A., D. Z. Nazif, and A. M. Ali, "Two elements MIMO antenna with asymmetric coplanar strip metamaterial configuration and EBG Hybrid Isolation," 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 001-003, Espoo, 2018.

38. Nandi, S. and A. Mohan, "A compact dual-band MIMO slot antenna for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2457-2460, 2017.
doi:10.1109/LAWP.2017.2723927

39. Deng, J., J. Li, L. Zhao, and L. Guo, "A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2270-2273, 2017.
doi:10.1109/LAWP.2017.2713986