1. Aircraft instruments and avionics, , , http://sarasotaavionics.com/category/flight-instruments, accessed 5 Dec. 2018.
2. Instrument Flying Handbook (FAA-H-8083-15B) Note, 2012, https://www.faa.gov/regulations policies/handbooks manuals/aviation/media/FAA-H-8083-15B.pdf, accessed 1 Dec. 2018.
3. Measuring Instruments for the Automotive Market, 2014, http://hiokiusa.com/wp-content/uploads/pdf/18033-Chirasi mobileE3-42M.pdf, accessed 1 Dec. 2018.
4. Quick Guide to Precision Measuring Instruments, E4329, 2003, https://www.mitutoyo.co.jp/eng/pdf/E4329 QuickGuide.pdf, accessed 1 Dec. 2018.
doi:10.1049/iet-smt.2017.0521
5. Rubio, J. J., J. Pieper, J. A. Meda-Campa~na, A. A. Aguilar, V. I. Rangel, and G. J. Gutierrez, "Modelling and regulation of two mechanical systems," IET Science, Measurement & Technology, Vol. 12, No. 5, 657-665, 2018.
doi:10.1049/iet-smt.2017.0383 Google Scholar
6. Rong, H., L. Zou, C. Peng, J. Lv, Y. Chen, and Y. Zhu, "Adaptive regulation of the weights of REQUEST used to magnetic and inertial measurement unit based on hidden Markov model," IET Science, Measurement & Technology, Vol. 12, No. 5, 666-672, 2018.
doi:10.1049/iet-smt.2017.0014 Google Scholar
7. Igder, M. A., T. Niknam, and M.-H. Khooban, "Bidding strategies of the joint wind, hydro, and pumped-storage in generation company using novel improved clonal selection optimisation algorithm," IET Science, Measurement & Technology, Vol. 11, No. 8, 991-1001, 2017. Google Scholar
8. Qi, J., A. Hahn, X. Lu, J. Wang, and C.-C. Liu, "Cybersecurity for distributed energy resources and smart inverters," IET Science, Measurement & Technology, Vol. 1, No. 1, 28-39, 2016.
doi:10.1049/iet-smt.2017.0125 Google Scholar
9. Ahour, J. N., S. Seyedtabaii, and G. B. Gharehpetian, "Determination and localisation of turn-to-turn fault in transformer winding using frequency response analysis," IET Science, Measurement & Technology, Vol. 12, No. 3, 291-300, 2018.
doi:10.1049/iet-smt.2016.0418 Google Scholar
10. Rajamani, R., M. Rajappa, K. Arunachalam, and B. Madanmohan, "Interturn short diagnosis in small transformers through impulse injection: on-line on-load self-impedance transfer function approach," IET Science, Measurement & Technology, Vol. 11, No. 8, 961-966, 2017. Google Scholar
11. Mpitziopoulos, A., "PSUs 101: A detailed look into power supplies,", 2015, https://www.tomshardware.com/reviews/power-supplies-101,4193-9.html, accessed 1 Dec. 2018. Google Scholar
12. Jordan, A., "Meeting transient specifications for electrical systems in military vehicles," Application Note, VICOR, http://cdn.vicorpower.com/documents/application notes/milvehicle appnote.pdf, accessed 1 Dec. 2018. Google Scholar
13. Cole, B., Transients, ESD and EMI in an untethered world, Nov. 2013, https://www.embedded.com/electronics-blogs/cole-bin/4424828/Transients{ESD-and-EMI-in-an-untethered-world, accessed 1 Dec. 2018.
doi:10.1109/TPAS.1984.318650
14. Don Russell, B., M. Stu, H. Stig, and N. Stig, "Substation electromagnetic interference, Part I: Characterization and description of the transient EMI problem," IEEE Transactions on Power Apparatus and Systems (PER), Vol. 4, No. 7, 1863-1870, 1984. Google Scholar
15. "Meeting military requirements for EMI and transient voltage spike suppression DC-DC con- verters and accessories," Application Note, AN0041.0, 1-13, http://www.vptpower.com/wp-content/uploads/downloads/2017/06/Meet-Mil-Req-EMI-and-transient-v-spike-supression-AN004-1.pdf, accessed 1 Dec. 2018. Google Scholar
16. Lepkowsk, J., "Identification of transient voltage noise sources,", Rev. 0, Semiconductor Components Industries, AND8228/D, 2005, http://www.onsemi.com/pub/Collateral/AND8228-D.PDF, accessed 1 Dec. 2018.
doi:10.1109/4234.681357 Google Scholar
17. Xue, G., "End-to-end data paths: Quickest or most reliable?," IEEE Communications Letters, Vol. 2, No. 6, 156-158, 1998.
doi:10.1049/iet-smt.2017.0573 Google Scholar
18. Fan, X., L. Li, Y. Zhou, N. Tang, Z. Zou, X. Li, G. Huang, and M. Liu, "Online detection technology for SF6 decomposition products in electrical equipment: A review," IET Science, Measurement & Technology, Vol. 12, No. 6, 707-711, 2018.
doi:10.1109/16.992868 Google Scholar
19. Kapur, P., G. Chandra, J. P. McVittie, and K. C. Saraswat, "Technology and reliability constrained future copper interconnects --- Part II: performance implications," IEEE Trans. Electron Devices, Vol. 49, No. 4, 598-604, 2002. Google Scholar
20. Tripathi, J. N., R. K. Nagpal, and R. Malik, "Robust optimization and reflection gain enhancement of serial link system for signal integrity and power integrity," Int. J. of Design, Analysis and Tools for Circuits and Systems, Vol. 2, No. 1, 70-85, 2011.
doi:10.1109/TCSII.2015.2483198 Google Scholar
21. Cordeiro, R. F., S. R. Oliveira Arnaldo, and J. M. N. Vieira, "All-digital transmitter with a mixed-domain combination filter," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 63, No. 1, 4-8, 2016. Google Scholar
22. Sharma, S. and T. Ytterdal, "In-probe ultrasound beamformer utilizing switched-current analog RAM," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 62, No. 6, 521-571, 2015.
doi:10.1109/TCSII.2017.2717044 Google Scholar
23. Jeon, B.-K., S.-K. Hong, and O.-K. Kwon, "A low-power 12-bit extended counting ADC without calibration for CMOS image sensors," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, No. 7, 824-828, 2018.
doi:10.1109/TCSII.2015.2468920 Google Scholar
24. Gebreyohannes, F. T., A. Frappeand, and A. Kaiser, "A Configurable Transmitter Architecture for IEEE 802.11ac and 802.11ad Standards," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63, No. 1, 9-13, 2016. Google Scholar
25. Tadic, N., A. Dervic, M. Erceg, B. Goll, and H. Zimmermann, "A 54.2 dB current gain dynamic range, 1.78 GHz gain-bandwidth product CMOS voltage-controlled current amplifier/attenuator," IEEE Transactions on Circuits and Systems II: Express Briefs, (early access), 824-828, 2018.
doi:10.1109/TCSI.2011.2123550 Google Scholar
26. El-Gabaly, A. M. and C. E. Saavedra, "A quadrature pulse generator for short-range UWB vehicular radar applications using a pulsed oscillator and a variable attenuator," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 10, 2285-2295, 2011. Google Scholar
27. Stukach, O. V., "Modeling of attenuator structures on field effect transistors with minimal phase shift at attenuation regulation," Power Engineering, Bulletin of the Tomsk Polytechnic University, Vol. 311, No. 4, 90-93, 2007. Google Scholar
28. Barta "Automatic return-loss optimization of a variable FET attenuator,", Patent US4975604, 1990, patents.google.com/patent/US4975604, accessed 1 Oct. 2018. Google Scholar
29. Ehlers, E. R. and D. J. Dascher, "Broadband step attenuator with improved time domain performance,", Patent US20060279376, 2006, http://www.freepatentsonline.com/y2006/0279376.html, accessed 1 Oct. 2018. Google Scholar
30. Huang, F.-H. and J.-M. R. Mourant, "Analog control integrated FET based variable attenuators,", Patent US7205817,327/308, 2007, patents.google.com/patent/US7205817, accessed 1 Oct. 2018. Google Scholar
31. Hwang, H. S., Y. S. Na, M. S. Kim, B. H. Jo, and K. S. Park, "Step attenuator,", Patent US7525395, 2009, patents.google.com/patent/US7525395, 2009-04-28, accessed 1 Oct. 2018. Google Scholar
32. Vice, M. W., "Four-state digital attenuator having two-bit control interface,", Patent US7786822, 2010, patents.google.com/patent/US7786822, accessed 1 Oct. 2018. Google Scholar
33. Staudinger "Electronic circuits with variable attenuators and methods of their operation,", Patent US8674746, 2014, patents.google.com/patent/US8674746, accessed 1 Oct. 2018. Google Scholar
34. Sharma, V., "Low phase shift, high frequency attenuator,", Patent US9787286B2, 2017, patents.google.com/patent/US9787286, accessed 1 Oct. 2018.
doi:10.1109/TADVP.2008.2011560 Google Scholar
35. Buckwalter, J. F., "Predicting microwave digital signal integrity," IEEE Trans. Adv. Packaging, Vol. 32, No. 2, 280-289, 2009.
doi:10.1109/92.365450 Google Scholar
36. Srivastava, M. B. and M. Potkonjak, "Optimum and heuristic transformation techniques for simultaneous optimization of latency and throughput," IEEE Trans. Very Large Scale Integration (VLSI) Systems, Vol. 3, No. 1, 2-19, 1995.
doi:10.1109/TCSI.2014.2361035 Google Scholar
37. Liu, W.-C., T.-C. Wei, Y.-S. Huang, C.-D. Chan, and S.-J. Jou, "All-digital synchronization for SC/OFDM mode of IEEE 802.15.3c and IEEE 802.11ad," IEEE Trans. Circuits and Systems I: Regular Papers, Vol. 62, No. 4, 545-553, 2015.
doi:10.1002/cta.818 Google Scholar
38. Eudes, T. and B. Ravelo, "Analysis of multi-gigabits signal integrity through clock H-tree," Int. J. Circ. Theor. Appl., Vol. 41, No. 5, 535-549, May 2013.
doi:10.1002/cta.2516 Google Scholar
39. Hasanzadeh, M. R. and A. Abrishamifar, "A novel OTA compensation approach suitable for CT-ΔΣ modulators," Int. J. Circ. Theor. Appl., Vol. 46, No. 12, 2248-2265, Dec. 2018. Google Scholar
40. Figueiredo, M., J. Goes, L. B. Oliveira, and A. Steiger-Garcao, "Low voltage low power fully differential self-biased 1.5-bit quantizer with built-in thresholds," Int. J. Circ. Theor. Appl., Vol. 46, No. 12, 681-691, Dec. 2018. Google Scholar