1. Tesla, N., Apparatus for transmitting electrical energy, U.S. Patent 1 119 732, Dec. 1, 1914.
2. Andre, K., K. Aristeidis, M. Robert, J. D. Joannopoulos, F. Peter, and S. Marin, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254 Google Scholar
3. Sample, A. P., D. T. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, 544-554, 2011.
doi:10.1109/TIE.2010.2046002 Google Scholar
4. Zhang, J. and C. Cheng, "“Quantitative investigation into the use of resonant magneto-inductive links for efficient wireless power transfer," IET Microwaves Antennas & Propagation, Vol. 10, 38-44, 2016.
doi:10.1049/iet-map.2014.0783 Google Scholar
5. Zhang, F., S. A. Hackworth, W. Fu, C. Li, Z. Mao, and M. Sun, "Relay effect of wireless power transfer using strongly coupled magnetic resonances," IEEE Transactions on Magnetics, Vol. 47, 1478-1481, 2011.
doi:10.1109/TMAG.2010.2087010 Google Scholar
6. Ahn, D. and S. Hong, "A study on magnetic field repeater in wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, 360-371, 2013.
doi:10.1109/TIE.2012.2188254 Google Scholar
7. Zhong, W., C. K. Lee, and S. Y. R. Hui, "General analysis on the use of Tesla’s resonators in domino forms for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, 261-270, 2013.
doi:10.1109/TIE.2011.2171176 Google Scholar
8. Zhang, J. and C. Cheng, "Analysis and optimization of three-resonator wireless power transfer system for predetermined-goals wireless power transmission," Energies, Vol. 9, 274, 2016.
doi:10.3390/en9040274 Google Scholar
9. Fu, M., Z. Tong, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," IEEE Transactions on Microwave Theory & Techniques, Vol. 63, 801-812, 2015.
doi:10.1109/TMTT.2015.2398422 Google Scholar
10. Fu, M., H. Yin, M. Liu, Y. Wang, and C. Ma, "A 6.78 MHz multiple-receiver wireless power transfer system with constant output voltage and optimum efficiency," IEEE Transactions on Power Electronics, Vol. 33, 5330-5340, 2018.
doi:10.1109/TPEL.2017.2726349 Google Scholar
11. Hao, P., L. Lu, and Z. Liang, "Priority evaluation for multiple receivers in wireless power transfer based on magnetic resonance," 2016 IEEE Wireless Power Transfer Conference (WPTC), 1-4, 2016. Google Scholar
12. Zhang, J. and F. Wang, "Efficiency analysis of multiple-transmitter wireless power transfer systems," International Journal of Antennas and Propagation, Vol. 2018, 11, 2018. Google Scholar
13. Zhang, C., D. Lin, and S. Y. Hui, "Basic control principles of omnidirectional wireless power transfer," IEEE Transactions on Power Electronics, Vol. 31, 5215-5227, 2016. Google Scholar
14. Johari, R., J. V. Krogmeier, and D. J. Love, "Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance," IEEE Transactions on Industrial Electronics, Vol. 61, 1774-1783, 2013.
doi:10.1109/TIE.2013.2263780 Google Scholar
15. Kiani, M. and M. Ghovanloo, "The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, 2065-2074, 2012.
doi:10.1109/TCSI.2011.2180446 Google Scholar
16. Jadidian, J. and D. Katabi, "Magnetic MIMO: How to charge your phone in your pocket," International Conference on Mobile Computing and Networking, 495-506, 2014. Google Scholar
17. Moghadam, M. R. V. and R. Zhang, "Node placement and distributed magnetic beamforming optimization for wireless power transfer," IEEE Transactions on Signal and Information Processing over Networks, Vol. 4, 264-279, 2018.
doi:10.1109/TSIPN.2017.2689683 Google Scholar
18. Yang, G., M. R. V. Moghadam, and R. Zhang, "Magnetic beamforming for wireless power transfer," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3936-3940, 2016.
doi:10.1109/ICASSP.2016.7472415 Google Scholar
19. Lee, J. and S. Nam, "Fundamental aspects of near-field coupling small antennas for wireless power transfer," IEEE Transactions on Antennas and Propagation, Vol. 58, 3442-3449, 2010.
doi:10.1109/TAP.2010.2071351 Google Scholar
20. Zhang, J. and C. Cheng, "Investigation of near-field wireless power transfer between two efficient electrically small planar antennas," 2014 IEEE 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 720-723, 2014.
doi:10.1109/APCAP.2014.6992598 Google Scholar
21. Chen, Z., H. Sun, and W. Geyi, "Maximum wireless power transfer to the implantable device in the radiative near field," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1780-1783, 2017. Google Scholar
22. Daniel, K., C. Rathge, and U. Jumar, "Design methodology for high efficient inductive power transfer systems with high coil positioning flexibility," IEEE Transactions on Industrial Electronics, Vol. 60, 372-381, 2013.
doi:10.1109/TIE.2011.2181134 Google Scholar
23. Lu, S., C. Xu, R.-Y. Zhong, and L. Wang, "A RFID-enabled positioning system in automated guided vehicle for smart factories," Journal of Manufacturing Systems, Vol. 44, 179-190, 2017.
doi:10.1016/j.jmsy.2017.03.009 Google Scholar
24. Huang, S.-J., T.-S. Lee, W.-H. Li, and R.-Y. Chen, "Modular on-road AGV wireless charging systems via interoperable power adjustment," IEEE Transactions on Industrial Electronics, Vol. 66, 5918-5928, 2019.
doi:10.1109/TIE.2018.2873165 Google Scholar