1. Wang, Q., et al. "Reconstruction of EIT images via patch based sparse representation over learned dictionaries," Instrumentation & Measurement Technology Conference, IEEE, 2015. Google Scholar
2. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003 Google Scholar
3. Vauhkonen, M., et al. "Tikhonov regularization and prior information in electrical impedance tomography," IEEE Transactions on Medical Imaging, Vol. 17, No. 2, 285-293, 1998.
doi:10.1109/42.700740 Google Scholar
4. Oraintara, S., "A method for choosing the regularization parameter in generalized tikhonov regularized linear inverse problems," Int. Conf. Image Process, Vol. 1, 2000. Google Scholar
5. Tian, W., M. F. Ramli, W. Yang, and J. Sun, "Investigation of relaxation factor in landweber iterative algorithm for electrical capacitance tomography," 2017 IEEE International Conference on Imaging Systems and Techniques (IST), 1-6, Beijing, 2017. Google Scholar
6. Baloch, G. and H. Ozkaramanli, "Image denoising via correlation-based sparse representation," Signal, Image and Video Processing, 2017. Google Scholar
7. Quan, X., et al. "Image denoising based on adaptive over-complete sparse representation," Chinese Journal of Scientific Instrument, Vol. 30, No. 9, 1886-1890, 2009. Google Scholar
8. Elad, M. and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Transactions on Image Processing, Vol. 15, 3736-3745, 2006 (Pubitemid 44811686).
doi:10.1109/TIP.2006.881969 Google Scholar
9. Rubinstein, R., et al. "Dictionaries for sparse representation modeling," Proceedings of the IEEE, Vol. 98, No. 6, 1045-1057, 2010.
doi:10.1109/JPROC.2010.2040551 Google Scholar
10. Wang, J., et al. "Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography," Signal Processing, Vol. 92, No. 12, 2952-2961, 2012.
doi:10.1016/j.sigpro.2012.05.027 Google Scholar
11. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4311-4322, 2006.
doi:10.1109/TSP.2006.881199 Google Scholar
12. Engan, K., K. Skretting, and J. H. Husøy, "A family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation," Digital Signal Processing, Vol. 17, 32-49, Jan. 2007.
doi:10.1016/j.dsp.2006.02.002 Google Scholar
13. Mailhé, B., S. Lesage, R. Gribonval, and F. Bimbot, "Shift-invariant dictionary learning for sparse representations: Extending K-SVD," Proceedings of the 16th European Signal Processing Conference (EUSIPCO2008), Lausanne, Switzerland, Aug. 2008. Google Scholar
14. Mairal, J., F. Bach, J. Ponce, and G. Sapiro, "Online dictionary learning for sparse coding," ICML’09: Proceedings of the 26th Annual International Conference on Machine Learning, 689-696, ACM, New York, NY, USA, Jun. 2009. Google Scholar
15. Su, H., F. Xing, and L. Yang, "Robust cell detection of histopathological brain tumor images using sparse reconstruction and adaptive dictionary selection," IEEE Trans Med Imaging, Vol. 35, No. 6, 1575-1586, 2016.
doi:10.1109/TMI.2016.2520502 Google Scholar
16. Jin, B., T. Khan, and P. Maass, "A reconstruction algorithm for electrical impedance tomography based on sparsity regularization," International Journal for Numerical Methods in Engineering, Vol. 89, No. 3, 337-353, 2012.
doi:10.1002/nme.3247 Google Scholar
17. Gong, B., et al. "Sparse regularization for EIT reconstruction incorporating structural in formation derived from medical imaging," Physiological Measurement, Vol. 37, No. 6, 843-862, 2016.
doi:10.1088/0967-3334/37/6/843 Google Scholar
18. Wang, Q., et al. "Patch based sparse reconstruction for electrical impedance tomography," Sensor Review, Vol. 37, No. 3, 2017. Google Scholar
19. Fan, W., et al. "Modified sparse regularization for electrical impedance tomography," Review of Scientific Instruments, Vol. 87, 2016. Google Scholar
20. Zhao, B., H. X. Wang, X. Y. Chen, X. L. Shi, and W. Q. Yang, "Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method," Measurement Science and Technology, Vol. 18, No. 11, 3373-3383, 2007.
doi:10.1088/0957-0233/18/11/017 Google Scholar
21. Skretting, K. and K. Engan, "Image compression using learned dictionaries by RLS-DLA and compared with K-SVD," IEEE International Conference on Acoustics, IEEE, 2011. Google Scholar
22. Press, H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Section 2.7.3. Noodbury Formula," Numerical Recipes: The Art of Scientific Computing, 3rd Edition, Camdridge University Press, New York, ISBN 978-0-521-88068-8, 2007. Google Scholar
23. Adler, A., et al. "GREIT: A unified approach to 2D linear EIT reconstruction of lung images," Physiological Measurement, Vol. 30, No. 6, S35-S55, 2009.
doi:10.1088/0967-3334/30/6/S03 Google Scholar
24. Abubaker, A. and P. M. van den Berg, "Total variation as a multiplicative constraint for solving inverse problems," IEEE Transactions on Image Processing, A Publication of the IEEE Signal Processing Society, Vol. 10, No. 9, 0-1392, 2001. Google Scholar