1. Nikitin, P. V., S. Lam, and K. V. S. Rao, "Low cost silver ink RFID tag antennas," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 353-356, 2005. Google Scholar
2. Yang, L., A. Rida, R. Vyas, and M. M. Tentzeris, "RFID tag and RF structures on a paper substrate using inkjet-printing technology," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2894-2901, Dec. 2007.
doi:10.1109/TMTT.2007.909886 Google Scholar
3. Batchelor, J. C., E. A. Parker, J. A. Miller, V. Sanchez-Romaguera, and S. G. Yeates, "Inkjet printing of frequency selective surfaces," Electron. Lett., Vol. 45, No. 1, 7-8, Jan. 2009.
doi:10.1049/el:20092713 Google Scholar
4. Rida, A., L. Yang, R. Vyas, and M. M. Tentzeris, "Conductive inkjet printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications," IEEE Antennas Propag. Mag., Vol. 51, No. 3, 13-23, Jun. 2009.
doi:10.1109/MAP.2009.5251188 Google Scholar
5. Walther, M., A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, "Terahertz metamaterials fabricated by inkjet printing," Appl. Phys. Lett., Vol. 95, No. 251107, Dec. 2009. Google Scholar
6. Cooper, J. R., S. Kim, and M. M. Tentzeris, "A novel polarization-independent, free-space, microwave beam splitter utilizing an inkjet-printed, 2-D array frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 11, 686-688, Jun. 2012.
doi:10.1109/LAWP.2012.2204715 Google Scholar
7. Maza, A. R., B. Cook, G. Jabbour, and A. Shamim, "Paper-based inkjet-printed ultra-wideband fractal antennas," IET Microwaves, Antennas & Propagation, Vol. 6, No. 12, 1366-1373, Sep. 2012.
doi:10.1049/iet-map.2012.0243 Google Scholar
8. Subbaraman, H., D. T. Pham, X. Xu, M. Y. Chen, A. Hosseini, X. Lu, and R. T. Chen, "Inkjet-printed two-dimensional phased-array antenna on a flexible substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 170-173, Mar. 2013.
doi:10.1109/LAWP.2013.2245292 Google Scholar
9. Yoo, M., H. K. Kim, S. Kim, and M. M. Tentzeris, "Silver nanoparticle-based inkjet-printed metamaterial absorber on flexible paper," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1718-1721, Apr. 2015.
doi:10.1109/LAWP.2015.2420712 Google Scholar
10. Bin Ashraf, F., T. Alam, and M. T. Islam, "A printed xi-shaped left-handed metamaterial on low-cost flexible photo paper," Materials, Vol. 10, No. 752, Jul. 2017. Google Scholar
11. Zabri, S. N., R. Cahill, G. Conway, and A. Schuchinsky, "Inkjet printing of resistively loaded FSS for microwave absorbers," Electron. Lett., Vol. 51, No. 13, 999-1001, Jun. 2015.
doi:10.1049/el.2015.0696 Google Scholar
12. Çiftçi, T., B. Karaosmanoglu, and Ö. Ergül, "Low-cost inkjet antennas for RFID applications," IOP Conf. Ser.: Mater. Sci. Eng., Vol. 120, No. 1, Apr. 2016. Google Scholar
13. Güler, S., B. Karaosmanoglu, and Ö. Ergül, "Design, simulation, and fabrication of a novel type of inkjet-printed pixel antenna," Progress In Electromagnetics Research Letters, Vol. 64, 51-55, 2016.
doi:10.2528/PIERL16081602 Google Scholar
14. Mutlu, F., C. Önol, B. Karaosmanoglu, and Ö. Ergül, "Inkjet-printed cage-dipole antennas for radio-frequency applications," IET Microwaves, Antennas & Propagation, Vol. 11, No. 14, 2016-2020, Nov. 2017.
doi:10.1049/iet-map.2016.0486 Google Scholar
15. Ibili, H. and Ö. Ergül, "Very low-cost inkjet-printed metamaterials: Progress and challenges," Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes (IMWSAPM), 2017. Google Scholar
16. Ibili, H., B. Karaosmanoglu, and Ö. Ergül, "Demonstration of negative refractive index with low-cost inkjet-printed microwave metamaterials," Microw. Opt. Technol. Lett., Vol. 60, No. 1, 187-191, Jan. 2018.
doi:10.1002/mop.30942 Google Scholar
17. Çetin, E., M. B. Sahin, and Ö. Ergül, "Array strategies for improving the performances of chipless RFID tags," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 2015-2016, 2018. Google Scholar
18. Demir, M. A., F. Mutlu, and Ö. Ergül, "Design of highly distinguishable letters for inkjet-printed chipless RFID tags," Proc. IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (IEEE APWC), 783-786, 2018. Google Scholar
19. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U" split ring resonators," Appl. Phys. Lett., Vol. 97, No. 081901, Aug. 2010. Google Scholar
20. Ekmekci, E., Topalli K., T. Akin, and G. Turhan-Saya, "A tunable multi-band metamaterial design using micro-split SRR structures," Opt. Exp., Vol. 17, No. 18, 16046-16058, Aug. 200.
doi:10.1364/OE.17.016046 Google Scholar
21. Turkmen, O., E. Ekmekci, and G. Turhan-Sayan, "Nested U-ring resonators: A novel multi-band metamaterial design in microwave region," IET Microwaves, Antennas & Propagation, Vol. 6, No. 10, 1102-1108, Jul. 2012.
doi:10.1049/iet-map.2012.0037 Google Scholar
22. Bakir, M., K. Delihacioglu, M. Karaaslan, F. Dincer, and C. Sabah, "U-shaped frequency selective surfaces for single- and dual-band applications together with absorber and sensor configurations," IET Microwaves, Antennas & Propagation, Vol. 10, No. 3, 293-300, Feb. 2016.
doi:10.1049/iet-map.2015.0341 Google Scholar
23. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.
24. Ergül, Ö and L. Gürel, The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems, Wiley-IEEE, 2014.
doi:10.1002/9781118844977
25. Önol, C., A. Üçüncü, and Ö. Ergül, "Efficient multilayer iterative solutions of electromagnetic problems using approximate forms of the multilevel fast multipole algorithm," IEEE Antennas Wireless Propag. Lett., Vol. 16, 3253-3256, 2017.
doi:10.1109/LAWP.2017.2771523 Google Scholar
26. Mutlu, F., Design, Simulation, and Fabrication of Low-Cost Inkjet Antennas, MS Thesis, Middle East Technical University, Aug. 2016.